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Forest understory vegetation

• Critical components of forest 
ecosystems 

• Contribute to biodiversity

• Protect against erosion

• Influence nutrient cycles

• Provide forage and cover for wildlife

 Importance of modeling 
understory vegetation characteristics 



• Number of plant individuals

• Binary occurrences (presence/absence)

• Biomass per unit area

• Plant cover (e.g., percent shrub cover)
• Prediction inherently difficult

• Bounded between 0 and 1

• Many zero observations & heteroscedastic
error variance 

• Often subject to spatial dependence

 Distributional features tend to

be ignored in analysis

Abundance measures



Logit Transformed Response

• Logit-transform (0,1) response to values on 
real line

• Standard linear regression

• Ordinary least squares (OLS)

• Generalized least squares (GLS)  account for 
spatial dependence



Beta Distribution

• Very flexible 
distribution 
 accommodates various
plant cover frequency
distributions

0 < y < 1; shape parameters p, q > 0, and gamma 
function Γ(·)
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Beta regression (BR)

• Ferrari & Cribari-Neto (2004) proposed new 
parameterization where:

and introduced beta regression model:

• Implemented in betareg R package (Cribari-Neto and 
Zeileis 2010) and PROC GLIMMIX in SAS
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Copula Model

• Copula: joins univariate marginal distributions into 
multivariate distribution function

• Multivariate Gaussian copula generalizes multivariate normal 
dependence structure to non-normal marginals

• A joint distribution function is

standard normal cdf

multivariate normal cdf with correlation matrix

( ) ( ){ } ( ){ }1 1
1 1; ,..., n nC y F y F y− −

Σ  Σ = Φ Φ Φ 

Φ

ΣΦ Σ



Gaussian Copula Joint Density

• Differentiating the distribution funtion yields the joint density 
function:

In denotes the n x n identity matrix

fi is the marginal density of yi

determines the dependence structure
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Spatial Gaussian Copula

• Spatial correlation matrix with exponential ‘decay’ 
parameter θ:

• Spatial Gaussian copula brings non-normal distributions 
into Gaussian geostatistical framework (Madsen 2009)

• Obtain maximum likelihood estimates by numerically 
maximizing the log of expected likelihood with respect to 
β,    , and θ
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Objectives

• Case Study: Model % shrub cover in riparian 
forests as function of topographic conditions 
and overstory vegetation characteristics using 
five modeling approaches:

OLS, GLS, BR, BRdep, and COP

• Simulation Study: Evaluate the performance of 
five modeling approaches in terms of their 
parameter estimates



Case Study – Data

• 4 headwater streams in the 
Oregon Coast Range (Cissel et al. 
2006, Marquardt 2010)

• Percent shrub cover

• Visually determined (nearest 
5%) on 1 m x 1 m plots along 
transects (n=248)

• Distance to stream (DTS in m)

• Height above stream (HAS in m)

• Leaf area index (LAI)

• % slope, aspect



• Model with smallest Bayesian Information Criterion included 
DTS & LAI as covariates

• BR models had poor explanatory power (pseudo-R2 ≤ 0.34)

• OLS & GLS models: MSPE largest, negative bias

• BR, BRdep & COP models: MSPE slightly smaller, unbiased

Case Study – Results



Simulation Study – Data

• 500 data sets of size n=248 to mimic observed shrub data

• Simulated response from beta distribution with

and

• Spatial locations, DTS, and LAI agree with actual data from 
case study

• Spatial dependence in simulated response:
– Simulate spatially dependent standard normal random variables Z

– Covariance matrix based on exponential model with θ ranging from 0.01 
(strong spatial dependence) to infinity (no spatial dependence)

– Transform Z’s to beta response Y
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Simulation Study – Methods

• Fit OLS, GLS, BR, BRdep, and COP models to 
500 simulated data sets across range of θ
values

• Calculate confidence coverage (CC) of 
parameters β0, β1, β2

NOTE: OLS and GLS parameters can be expressed in terms of β0, 
β1, β2 of the BR, BRdep, and COP models using Equation 15 in 
Espinheira et al. (2008)



Results – Simulation 
Study (cont’d)

• OLS & BR: poor CC for all β’s when 
spatial dependence is strong 
(small θ)

• GLS, BRdep & COP: 
– 95% confidence coverage (CC) for all 

β’s for θ ≥ 0.1

– 77-95% CC for θ < 0.1 with GLS 
having smallest CC



Conclusions

• Model fit is poor due to scale issues

• OLS and GLS resulted in biased model predictions  not 
recommended for modeling % shrub cover

• BR, BRdep, and COP provided unbiased predictions

• OLS & BR should not be used in the presence of spatial 
dependence

• When spatial dependence is strong, GLS, BRdep, and COP 
result in confidence coverage < 95%, with GLS performing 
worst

• BR and COP models should be extended to account for zero-
inflation



Possible Future Applications

• Copula model not restricted to shrub cover

• Model % canopy cover

• Model crown ratio  currently working on a 
copula model for modeling crown ratio and 
tree height simultaneously
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Questions?

For more details see:
Eskelson, B.N.I., Madsen, L., Hagar, J., and H. Temesgen. In press. 
Estimating riparian understory vegetation cover with beta regression 
and copula models. Forest Science XX:xxx-xxx.
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