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 Potential mean annual increment (PMAI): cubic meter volume per hectare per year 
(m3/ha/yr) at time of culmination

 indicates the productivity of a forest stand

 aids in forest planning and assessments 

 1 to 5% of the land base is sampled for ground variables (Y set, response). 

 Aerial photos, climate databases, lidar and remote sensing provide complete census of 
selected auxiliary variables (X set, covariates).

 Inference for natural resource planning is improved by “Populating” the forested 
landscape with potential productivity and biomass estimates. Nearest Neighbor (NN) 
methods are commonly used to populate the forest land base.

1. Background 
1.1. Imputing potential productivity for mapping and for estimating totals  



Lemon Squeezers for Predicting Potential Forest Productivity  
(Google Images)
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Background

Latta, G., Temesgen, H., and T. Barrett. 2009. Mapping and imputing potential productivity of 
Pacific Northwest Forests using climate variables. CJFR. 39: 1197-1207. 
[Used the Spatial Autoregressive Model (SAR) & localized prediction by using coordinates & 
selecting neighbors in a circular area (window) around the target unit. Compared MLR, thin 
plate splines, Most Similar Neighbor Method (MSN), and SAR]  

Temesgen, H., G. Latta, and T.M. Barrett. 2011. Imputing potential productivity of Pacific 
Northwest forests over space and time. Presented at the International Statistical Institute, 58th 
Congress, Aug. 21-26, Dublin, Ireland. 

[Compared SAR, Spatial Lag Models, Spatial Durbin Model, Random Forest, and MSN] 

*Ver Hoef J. and H. Temesgen. 2013. A comparison of the spatial linear model to nearest 
neighbor (k-NN) methods for forestry applications. PLOS ONE. (3):1-11. 

[Compared SLM and k-NN theoretically and through simulations (normal, binary, & count 
simulated data) and using forestry data – PMAI and dry biomass]

*Temesgen, H. and J. Ver Hoef. 2014. Evaluation of the spatial linear model, Random Forest, and 
gradient nearest neighbor methods for imputing potential productivity and biomass of the 
Pacific Northwest forests. Forestry: 6: 1-12 [Evaluated the performance of SLM, GNN, RF, and 
k-NN, and simulated (normal, Poisson, and lognormal distribution) data]
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Imputation is replacing a missing or non-sampled item/unit with another 
item/unit that has similar characteristics.

A) Nearest Neighbor methods

A1. Most Similar Neighbor (MSN, Moeur and Stage 1995)

A2. k-Similar Neighbors (k-NN)

A3. Gradient Nearest Neighbor (GNN) (Ohmann and Gregory)

A4. Random Forest  (RF)

B) Likelihood-based approaches

B1. Linear Regression (LM)

B2. Spatial Linear Model (SLM)

1.2. Methods Used to Predict Potential Forest Productivity 
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Select one 
or more neighbors 

that have similar X set values 
(Small distance metric)

Sample Data, X and Y
Calculate Variable-Space 

Distance using X’s

A1-A3 NN Methods
NN imputation steps in general 

(Temesgen et al. 2003)

Use Y set values
(or averages)
from selected

reference observation(s)
as estimates for the
target observation

Target Observation, X only



Pros and cons of NN methods

Imputation methods:

 predictions are within the bounds of 

biological reality because they are observed 

in the sample

 reuse existing samples, and distribution free 

 maintain logical relationships /dependence 

structure among response variables

(multivariate methods) 

E.g., predictive mapping and tree-lists, etc.

However, imputation methods are NOT:

 necessarily unbiased 
- for Y: match is based on X variables, not Y

 necessarily consistent
- as sample size increases more likely to find 
a close match 

NN methods lack a good measure of 
uncertainty. Often global RMSE, from 
cross-validation, is used for point-wise 
standard error. 
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A4. Random Forest 
- an ensemble learning method for classification, regression, and other tasks
- constructs a multitude of decision trees (based on training data) and outputs the 
class that is the mode of the classes (classification) or mean prediction 
(regression) of the individual trees
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A4. Pros of RF (Ensemble) methods

 Very useful for data exploration 

 Distribution free 

 Work best for classification problems, when they are trained to assign a data point 

to a class--preferably one of only a few possible classes. 

All variables are assumed to interact (inefficient if there are variables that have no 

or weak interactions). 
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A4. Cons of RF (Ensemble) 

 Can be extremely sensitive to small perturbations in the data: a slight change can 

result in a drastically different tree (outcomes)

 Lacks a probabilistic framework - unknown confidence intervals, posterior 

distributions etc.

 Have problems for out-of-sample prediction (non-smooth). Can easily overfit. This 

can be negated by validation methods and pruning, but this is a grey area. 

 Poor resolution on data with complex relationships among the variables. At each 

node, only two possibilities exist. Hence there are some variable relationships that 

Decision Trees just can't learn.
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1.2A. Nearest neighbor (NN) Methods: lack a good measure of 
uncertainty

 Cross validation is often used to compute prediction standard errors. 

𝜉𝜉 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

ŷi is the cross-validadtion prediction of yi for i=1...,n sample values.

Assuming prediction errors are normally distributed, 90% prediction intervals are 
formed as 𝑦𝑦𝑗𝑗 ± 1.64𝜉𝜉 for j=n+1,...,n+m out of sample.

For estimating standard error of a total: 𝑠𝑠𝑒𝑒 �𝑇𝑇 = 𝜉𝜉 𝑛𝑛 + 𝑚𝑚 𝑚𝑚

 Note that the ζ values are constant for all j.



1.2. Methods Used to Predict Potential Forest Productivity (cont’d) 
1.2B. Likelihood-based approaches

 Let the population of response values be partitioned into those that are:

■ observed 𝒚𝒚𝑶𝑶 = {𝑦𝑦𝑖𝑖; 𝑖𝑖 = 1,⋯ ,𝑛𝑛} and

■ unobserved 𝒚𝒚𝑼𝑼 = {𝑦𝑦𝑖𝑖; 𝑖𝑖 = 𝑛𝑛 + 1,⋯ ,𝑛𝑛 + 𝑚𝑚}, and

■ 𝒚𝒚 = (𝒚𝒚𝑶𝑶′ ,𝒚𝒚𝑼𝑼′ )′.

 Let the index set for the:

■ observed data be 𝕆𝕆 = 1,⋯ ,𝑛𝑛 and

■ unobserved data be 𝕌𝕌 = 𝑛𝑛 + 1,⋯ ,𝑛𝑛 + 𝑚𝑚.

Notation for spatial data (after Ver Hoef and Temegsen 2013)



We consider two main goals:

1) point prediction of 𝑦𝑦𝑗𝑗 for 𝑗𝑗 ∈ 𝕌𝕌, and

2) block prediction of the total or average 𝑇𝑇 = ∑𝑖𝑖=1𝑛𝑛+𝑚𝑚 𝑏𝑏𝑖𝑖𝑦𝑦𝑖𝑖 = 𝒃𝒃′𝒚𝒚,

where 𝑏𝑏𝑖𝑖 are the weights that define the block objective;

 e.g., if {𝑏𝑏𝑖𝑖 = 1; 𝑖𝑖 = 1,⋯ , 𝑛𝑛 + 𝑚𝑚 }, then T is a population total, and
if {𝑏𝑏𝑖𝑖 = 1/(𝑛𝑛 + 𝑚𝑚); 𝑖𝑖 = 1,⋯ , 𝑛𝑛 + 𝑚𝑚 }, then T is a population average.

For all response values, there are covariates contained in a design matrix X and 

the spatial coordinates are contained in matrix S.  

1.2. Methods Used to Predict Potential Forest Productivity (cont’d) 



1.2. Methods Used to Predict Potential Forest Productivity (cont’d) 

 To meet our two goals, we define the linear predictor,

�𝑦𝑦𝑗𝑗 = �
𝑖𝑖∈𝕆𝕆

𝜆𝜆𝑖𝑖,𝑗𝑗𝑦𝑦𝑖𝑖 = 𝜆𝜆𝑗𝑗′𝒚𝒚𝑶𝑶 , 1

where 𝑗𝑗 ∈ 𝕌𝕌.

A linear block predictor is

�𝑇𝑇 = �
𝑖𝑖∈𝕆𝕆

𝑏𝑏𝑖𝑖𝑦𝑦𝑖𝑖 + �
𝑗𝑗∈𝕌𝕌

𝑏𝑏𝑗𝑗 �𝑦𝑦𝑗𝑗 = 𝜔𝜔′𝒚𝒚𝑶𝑶 2



 Both the SLM and NN methods use distance in various ways.  

 A general definition: let A be a matrix with coordinates in the columns and the ith row 
denoted as 𝑎𝑎𝑖𝑖. A general distance formula between the ith and jth rows of A is,

𝑑𝑑 𝑖𝑖, 𝑗𝑗;𝐀𝐀,𝐖𝐖 ≡ 𝐚𝐚𝐢𝐢 − 𝐚𝐚𝐣𝐣
′𝐖𝐖 𝐚𝐚𝐢𝐢 − 𝐚𝐚𝐣𝐣 3

where W is a weighting matrix.

Let 𝒙𝒙𝒊𝒊′ and 𝒙𝒙𝒋𝒋′ be the ith and jth rows of X, respectively. Then a “variable-space 
distance’’ between the ith and jth sites can be computed as d(i,j;X,W). 

 Several types of distances are possible (e.g., Mahalanobis, proximity matrix)

1.2. Methods Used to Predict Potential Forest Productivity (cont’d) 



 Let D be a distance matrix with i,jth element d(i, j; X, W), which can be 

partitioned as: D= 
𝐃𝐃𝑶𝑶,𝑶𝑶 𝐃𝐃𝑶𝑶,𝑼𝑼
𝐃𝐃′𝑶𝑶,𝑼𝑼 𝐃𝐃𝑼𝑼,𝑼𝑼

 Let 𝐝𝐝𝑗𝑗 be the jth column of D, 𝑗𝑗 ∈ 𝕌𝕌, contained in 𝐃𝐃′𝑶𝑶,𝑼𝑼;
i.e., 𝐝𝐝𝑗𝑗 = {𝐃𝐃 𝑖𝑖, 𝑗𝑗 ; 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛; 𝑗𝑗 ∈ 𝕌𝕌}.

 If i is the index for min (𝐝𝐝𝑗𝑗), then for a first-order nearest neighbor, 𝜆𝜆𝑖𝑖,𝑗𝑗 = 1 in 
�𝑦𝑦𝑗𝑗 = ∑𝑖𝑖∈𝕆𝕆 𝜆𝜆𝑖𝑖,𝑗𝑗𝑦𝑦𝑖𝑖 = 𝜆𝜆𝑗𝑗′𝒚𝒚𝑶𝑶 and all other 𝜆𝜆𝑙𝑙,𝑗𝑗 = 0; 𝑙𝑙 ≠ 𝑖𝑖. This essentially assigns 
the value of yi to ŷi for the ith site that is closest to the jth site in “variable space”.  

 Let k be the index of the k nearest sites (smalles values), then 𝜆𝜆𝑖𝑖,𝑗𝑗 = 1/k; takes 
the average of {yi} from the k nearest neighbors in variable space.

1.2. Methods Used to Predict Potential Forest Productivity (cont’d) 



1.2B. Spatial Linear Model  (SLM)

Assume only the linear model: 𝑦𝑦 = 𝑋𝑋β + ε

Where X is a fixed covariates, β is a random vector of parameters, and ε is a 

random vector with var(ε)=V for some unknown spatial multivarite distribution. 

Unlike NN methods, SLM is a spatial stochastic model that allow optimization 

with respect to bias and square error. 

 Let V be partitioned as: 𝐯𝐯𝐚𝐚𝐯𝐯 𝐲𝐲 = 𝐕𝐕 =
𝐕𝐕𝑶𝑶,𝑶𝑶 𝐕𝐕𝑶𝑶,𝑼𝑼
𝐕𝐕′𝑶𝑶,𝑼𝑼 𝑽𝑽𝑼𝑼,𝑼𝑼

 Let 𝐯𝐯𝑗𝑗 be the jth column of V, 𝑗𝑗 ∈ 𝕌𝕌, contained in 𝐕𝐕𝑶𝑶,𝑼𝑼;
i.e., 𝐯𝐯𝑗𝑗 = {𝐕𝐕 𝑖𝑖, 𝑗𝑗 ; 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛; 𝑗𝑗 ∈ 𝕌𝕌}.



1.2B. Spatial Linear Model  (continued)

 The best linear unbiased predictor (BLUP) that minimizes squared-error loss 
for �𝑦𝑦𝑗𝑗 = 𝛌𝛌′𝑗𝑗𝒚𝒚𝑶𝑶 is (Cressie 1993 pgs 151-155):

𝛌𝛌𝑗𝑗′ = 𝐯𝐯𝑗𝑗 + 𝐗𝐗𝑂𝑂𝐂𝐂 𝐱𝐱𝑗𝑗 − 𝐗𝐗𝑂𝑂′ 𝐕𝐕𝑂𝑂,𝑂𝑂
−1 𝐯𝐯𝑗𝑗

′𝐕𝐕𝑂𝑂,𝑂𝑂
−1 8

where  𝐶𝐶 = �𝐗𝐗𝑂𝑂′ 𝐕𝐕𝑂𝑂,𝑂𝑂
−1𝐗𝐗𝑂𝑂 ) −1 with prediction variance of

var �𝑌𝑌𝑗𝑗 − 𝑌𝑌𝑗𝑗 = 𝐕𝐕 𝑗𝑗, 𝑗𝑗 − 2𝛌𝛌𝑗𝑗′𝐯𝐯𝑗𝑗 + 𝛌𝛌𝑗𝑗′𝐕𝐕𝑂𝑂,𝑂𝑂𝛌𝛌𝑗𝑗 9

Notice that β is unknown; the only assumption is the linear model and a 
known spatial covariance matrix.

 The covariance matrix can be estimated with REML. 



2. Comparison of Spatial Linear Models to Nearest Neighbor Methods  

1. Compare the predictive performances of selected NN methods to SLM
for imputing PMAI for mapping (point) and for estimating totals (block 
predictions).

2. Examine the performance of selected NN and SLM under spatially 
unbalanced sampling.

Objectives



2.1. Forest productivity data 
USFS’s National Forest Inventory and Analysis (FIA) Plots

Data 
Summary

FIA plots in Oregon and Washington (n= 3356) 

Response: Maximum potential mean annual 
increment (m3/ha/year) (0.2,23.8)

Covariates: 1) Temperature (0c)
2) Precipitation(cm)
3) Elevation (m)
4) Climate Moisture Index (cm)
5) An indicator variable based 

on western hemlock
6) Ownership

Spatial locations of PMAI variable. The redder shades indicate 

higher values, and the bluer shades indicate lower values. 

Presenter
Presentation Notes
Greg – revise this table by adding summary statistics for each species and a combined sumamry.



2.2. Resampling experiments (500 replications, 885/2471 split) 
Prediction methods:

MSN1: uses weighted Mahalanobis distance with k = 1.

MSN5: uses weighted Mahalanobis distance with k = 5.  

BestNN: uses both Mahalanobis and weighted Mahalanobis distance, and tries k = 1, 2, 
…, 30, and then chooses the distance matrix and k with the smallest cross-
validation RMSPE from the observed data.

RF1: uses proximity matrix with k=1 
RF5:  uses proximity matrix with k=5 
GNN1: uses canonical correspondence analysis on projected ordination of X with k=1 
GNN5: uses canonical correspondence analysis on projected ordination of X with k=5 

SLM: a spatial linear model using the same covariates as all NN methods as main 
effects only, with exponential covariance model estimated by REML and FPBK 
prediction and variance equations (Ver Hoef 2000, 2002).  
LM: multiple regression like SLM but assuming all random errors are independent.

)()(2
jijiij XXWXXd −′−=
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Unbalanced sampling (Oregon only)

One draw from the unbalanced spatial sample is shown 

with black circles around the sampled locations.

We preferentially sampled geographically by 

dividing up the study area into four parts. 

From each unbalanced spatial sample, the 

remaining locations were predicted.
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2.3. Performance measures
 RMSPE: Root-mean-squared-prediction error 

for point-wise predictions; for total prediction

where R=no. of resamplings, m=no. of point predictions (2471) per replication r

 SRB: signed relative bias

sign(   ) is the sign (positive or negative) of     , and k=y for a point-wise performance 
measure or k=T for a total performance measure.

𝝉𝝉𝑻𝑻 =
𝟏𝟏
𝑹𝑹��𝑻𝑻�𝒓𝒓 − 𝑻𝑻𝒓𝒓�

𝑹𝑹

𝒓𝒓=𝟏𝟏
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2.3. Performance measures over 500 replications 

PIC90: 90% prediction interval coverage. For point-wise predictions,

where             is the estimated standard error of      for NN methods, and from the 
square root of variance of ε for the SLM, with covariance parameters estimated by 
REML. 

𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑇𝑇 =
1
𝑅𝑅
�
𝑟𝑟=1

𝑅𝑅

𝑃𝑃 �𝑇𝑇𝑟𝑟 − 1.645 � �𝑠𝑠𝑒𝑒 �𝑇𝑇𝑟𝑟 < T_r &T_r < �𝑇𝑇𝑟𝑟 + 1.645 � �𝑠𝑠𝑒𝑒 �𝑇𝑇𝑟𝑟

where              is the estimated standard error of     .

PIC90y should be near 0.90 if prediction intervals are properly estimated.

𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑦𝑦 =
1
𝑚𝑚𝑅𝑅

�
𝑟𝑟=1

𝑅𝑅

�
𝑗𝑗=1

𝑚𝑚

𝑃𝑃 �𝑦𝑦𝑗𝑗|𝑟𝑟 − 1.645 � �𝑠𝑠𝑒𝑒 �𝑦𝑦𝑗𝑗|𝑟𝑟 < 𝑦𝑦𝑗𝑗|𝑟𝑟 & 𝑦𝑦𝑗𝑗|𝑟𝑟 < �𝑦𝑦𝑗𝑗|𝑟𝑟 + 1.645 � �𝑠𝑠𝑒𝑒 �𝑦𝑦𝑗𝑗|𝑟𝑟
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3. Results
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 Point prediction appears unbiased for all methods

 SLM reduced the RMSPE by:
 23.4 and 32.8% when compared to RF1 and GNN1.

 23.4 and 15.4% when compared to RF5 and GNN5

Point Prediction – Repeated Sampling

Method RMSPE 
(m3/ha/yr) SRB PICO90

MSN1 3.2 0.003 0.89
MSN5 2.6 -0.001 0.90
RF1 2.8 0.023 0.85
RF5 2.8 0.024 0.85
BestNN 2.3 0.048 0.90
GNN1 3.3 0.004 0.89
GNN5 2.6 0.004 0.90
LM 2.4 -0.003 0.90
SLM 2.1 -0.002 0.90 27

3. Imputing forest productivity for mapping 
Results over 500 resampling
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 Total prediction appears biased for RF, BestNN, and GNN. 

 SLM reduced the RMSPE by:
 31.4 and 26.9% when compared to RF1 and GNN1 

 31.0 and 13.1% when compared to RF5 and GNN5

28

Total Prediction – Repeated Sampling
Method RMSPE SRB PICO90
MSN1 294.3 0.086 0.93
MSN5 261.3 -0.029 0.91
RF1 325.4 0.746 0.74
RF5 323.2 0.732 0.73
BestNN 404.6 1.434 0.57
GNN1 305.2 0.113 0.93
GNN5 257.8 0.104 0.91
LM 255.6 -0.097 0.90
SLM 223.1 -0.05 0.89

3. Imputing forest productivity for population totals 
Results over 500 resampling
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• Total prediction appears biased for RF, BestNN and GNN.

• Except MSN, the NN methods showed positive SRB (over prediction). 

Results over 500 replications of Repeated Sampling
Point and Total in SRB
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 RF has poor prediction interval coverage for both point and total predictions.

 Best NN has poor prediction interval coverage for total

Results over 500 replications of Repeated Sampling
Point and Total in PICO90
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 Spatially unbalanced design created more bias for NN methods

 SLM remained relatively unbiased, with the smallest RMSPE and valid 
prediction intervals.

Point Prediction – Spatially unbalanced sampling
Method RMSPE SRB PICO90
MSN1 3.0 0.135 0.912
MSN5 2.5 0.227 0.907
RF1 3.1 0.080 0.905
RF5 2.5 0.104 0.903
BestNN 2.4 0.139 0.9
GNN1 3.3 0.061 0.906
GNN5 2.6 0.082 0.912
LM 2.4 0.159 0.903
SLM 2.1 0.028 0.918

31

3. Results over 500 resampling
spatially unbalanced design – point prediction

Point Prediction – Balanced Sampling

Method RMSPE 
(m3/ha/yr) SRB PICO90

MSN1 3.2 0.003 0.89
MSN5 2.6 -0.001 0.90
RF1 2.8 0.023 0.85
RF5 2.8 0.024 0.85
BestNN 2.3 0.048 0.90
GNN1 3.3 0.004 0.89
GNN5 2.6 0.004 0.90
LM 2.4 -0.003 0.90
SLM 2.1 -0.002 0.90 31



 For predicting a total, there are large biases for NN methods.

 The large bias caused the RMSPE for SLM to be much lower than any of the NN 
methods examined 

 Prediction intervals are far from the nominal 90%.  SLM was more robust.

32

Total Prediction – Unbalanced Sampling

Method RMSPE SRB PICO90
MSN1 637.9 2.635 0.248
MSN5 853.6 4.055 0.11
RF1 457.1 1.418 0.626
RF5 442.2 1.770 0.438
BestNN 576.1 1.651 0.308
GNN1 864.0 1.070 0.72
GNN5 834.3 1.382 0.582
LM 608.1 2.860 0.128
SLM 269.0 0.369 0.92

3. Results over 500 resampling
Spatially unbalanced design – total prediction
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4. Concluding Remarks  

• Re-samplings experiments (and simulations) show that the SLM has smaller 
eRMSPE with generally less bias and better interval coverage than NN methods.

• For both point and total predictions, the SLM reduced RMSPE from 5% to 67% over 
NN methods examined.

• Reasons for substantial differences in point and total predictions:
 SLM localizes the relation between the response variables and covariates in both the 

geographical and variable space. 

 SLM also accounts for the spatial structure of the data and minimizes prediction error  

• SLM was also more robust to spatially unbalanced sampling. 
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SLM Models: Better Lemon Squeezers
(after Ver Hoef and Temesgen 2013)

 Theoretical reviews shows that the SLM 
has the prediction optimality properties, and 
can be quite robust. 

 SLM provides point-wise prediction 
standard errors.

 Unbiased and provides accurate nominal 
coverage. SLM also accounts for the 
spatial structure of the data and minimizes 
prediction error. 

• SLM was also more robust to spatially 
unbalanced sampling. 

(Google Images)
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4. Research Directions

• Mapping probability surfaces for prediction or errors to provide a higher level of 
confidence in using resource maps.

• Examination of multivariate SLM to preserve the covariance among multiple 
response variables at new locations.

• Using LiDAR and multispectral imagery to relate PMAI with other covariates (e.g., 
parent material, soil moisture and soil nutrient regimes) via spatial linear mixed 
model and Bayesian spatial regression models 

• Choice of SLM or NN method depends on the number of response variables and 
objectives. The SLM is a good choice for imputing PMAI (and for imputing ≤ 3 
response variables), while NN is suggested when imputing >3 response variables.
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