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Scope and Objectives of this Report 
This report has been prepared for the Bureau of Land Management (BLM) to lay the groundwork for a 

planned growth-and-yield modeling study evaluating the potential impacts and associated uncertainty 

of projected climate changes on a variety of forest management outcomes on BLM lands in western 

Oregon.  This upcoming study will be conducted using the Climate extension of the Forest Vegetation 

Simulator (Climate-FVS) model developed and maintained by the US Forest Service.  Climate-FVS 

incorporates bioclimate envelop projections as inputs to drive tree- and stand-level growth and 

mortality.  The process by which Climate-FVS incorporates these factors is described briefly at the end of 

this report.  This report focuses on the input data for Climate-FVS rather than the growth-and-yield 

modeling outcomes that Climate-FVS generates. The results of Climate-FVS simulations are to be 

presented in a separate report. 

This report is intended to offer a comparative assessment of bioclimate envelope projections that feed 

into the FVS modeling environment with other independent research studies.  The goal of this 

comparison is to identify areas where independent research studies have come to similar conclusions or 

where disagreement remains regarding the expected changes in climatic suitability for tree species and 

forest types that will be simulated using Climate-FVS.  The underlying assumption is that areas that show 

strong agreement across modeling studies indicate higher confidence in the climatic effects on trees and 

forests within the study area.   

In general, this report provides a synthesis and analysis of climate and forestry research that has been 

previously peer-reviewed and published in scientific journals, although some datasets that have not yet 

been per reviewed have also been included.  This report utilizes datasets and processes from other 

research teams that were generated at a broad regional scale, and presents and analyses these data 

within a subset of their original geographic range (i.e., western Oregon).  The primary focus in our 

review is to identify areas of agreement and disagreement regarding bioclimate envelope projections; it 

is not intended to more thoroughly evaluate the underlying causes of projected bioclimate envelope 

shifts due to specific environmental factors such as amounts of timing of precipitation, changes in 

temperature, etc. 

This report is structured to offer a brief overview of climate trends and projections in the Pacific 

Northwest, the relevance of these changes to forest ecosystems in the region, and then a more detailed 

discussion and evaluation of the methodologies and tradeoffs involved in developing and interpreting 

bioclimate envelope projections.  We close with a brief description of how Climate-FVS incorporates 

these bioclimate envelopes into its simulations that will be presented in a separate report.   

The bulk of the analysis in this report consists of detailed comparison and discussion of several 

bioclimate envelope studies that are already publicly available and cover the Western Oregon BLM 

lands.  This report considers pre-existing geospatial datasets covering this area that have either been 

peer-reviewed in scientific publications (e.g., Coops, Waring & Schroeder 2009; Crookston et al. 2010; 

Coops & Waring 2011) or have been published with sufficient documentation of methods to enable 

meaningful comparison and discussion (e.g., Bachelet 2014).  As a review of existing datasets, we do not 
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conduct new modeling projections in this review.  Further, additional modeling approaches including 

process-models, gap models, and other approaches to bioclimate envelope modeling are underway in 

several research projects, and we encourage the BLM to consider these and other lines of research to 

further evaluate the potential impacts of climate change on forest ecosystems as they become available.  

We do not thoroughly address all these different modeling approaches in this report. 

Introduction 

Climate trends and projections for the Pacific Northwest 

By the end of the twentieth century, the climate across the Pacific Northwest (PNW) is on course to be 

substantially shifted from the conditions under which our region’s forests and other ecosystems have 

developed.  Dalton and Mote (2013 chap. 2) report the latest round of climate modeling as projecting an 

increase in annual average temperatures of 2.0-8.5°F by mid-century.  This warming is consistently 

projected to be more intense in summers, which are also more commonly expected to become drier as 

precipitation is commonly modeled to shift earlier in the season.  The climate models are unanimous in 

projection of increases in heat and precipitation extremes and decreases in cold extremes. 

Relevance of climate change to PNW forest ecosystems  

Climate exerts a strong influence over forest ecosystem processes.  Climate change may directly affect 

physiological processes such as individual tree growth, forest productivity, and mortality; climate may 

also indirectly affect forests by altering disturbance regimes including fire, pests, and disease.  These 

effects have been summarized in reviews covering Washington state by Littell et al. (2010) and Oregon 

by Shafer et al. (2010).   

Although gradual changes in temperature and precipitation will alter growing environments for many 

tree species and correspond to changes in growth and mortality, the effects of a changing climate on 

disturbances are anticipated to be much stronger drivers of forest ecosystem change: 

The most rapidly visible and short-term effects on forest ecosystems will be caused by 

altered disturbance regimes, often occurring with increased frequency and severity.  

Interacting disturbances will have the biggest effects on ecosystem responses, 

simultaneously altering species composition, structure, and function. 

Vose et al. (2012) 

There are indications that ongoing changes in climate have already produced increased occurrence of 

drought and heat stress concurrent with a rise in reports in scientific journals of tree mortality in forests 

around the world (Allen et al. 2010).  This global trend has been more strongly documented with 

observations in the western US, and directly linked to an observed increase in annual tree mortality 

(nearly doubled) across the region (van Mantgem et al. 2009).   

The increased tree mortality rates documented by van Mantgem et al. (2009) were observed across the 

western US in every  geographic region, elevation zone,  genus, diameter class, and fire return interval 

considered, and supported with analysis indicating historical fire exclusion, structural changes and 
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within-stand competition were not causing these changes; instead, increased temperature and water 

deficits were strongly correlated with mortality, leading the authors to conclude that “regional warming 

and consequent drought stress [are] the most likely drivers.” 

These early indicators of increased stress and mortality for trees and forests in the West are reinforced 

by remotely sensed disturbance detection which shows increased occurrence of disturbance within 

areas that have been identified through bioclimate envelope modeling as vulnerable to climate change 

(Waring, Coops & Running 2011). 

The following analysis and review of projected climate change effects on the suitability of western 

Oregon lands is primarily focused on the potential climatic niches for individual tree species over the 

coming century.  This review does not address the likely impacts of altered fire, pest, or disease 

dynamics, which are generally expected to exert an even stronger influence on PNW forests.  

Climate Models and Emissions Scenarios 

The recent surge in modeling studies of species responses to climate change have drawn from 

projections of climate variables produced in two waves of research that feed into the work of the 

Intergovernmental Panel on Climate Change (IPCC).  In general, projections of future climate 

fundamentally involve two major components: General Circulation Models (GCMs) which simulate 

future climate based on a set of pre-defined drivers and climatic relationships and processes; and 

emissions scenarios describing the timing and amount of greenhouse gas emissions over the next 

century.   

The principal data sources considered in this review were peer-reviewed based on their application of 

GCMs and emissions scenarios utilized in the Fourth Assessment Report of the IPCC.  This collection of 

models and outputs is known as the third phase of the Coupled Model Intercomparison Project (CMIP3).  

Of the two available species-level bioclimate envelope data sources for western Oregon (described in 

greater detail below), the only GCM applied in both cases was the Canadian Centre for Climate Modeling 

and Analysis’ CGCM3 model.  Similarly, the emissions scenarios shared among these two data sources 

were limited to the A2 and B1 scenarios.  More detailed descriptions of the A2, B1, and other emissions 

scenarios can be found in IPCC’s Special Report on Emission Scenarios (2000). 

Leading up to the Fifth Assessment Report of the IPCC, updated versions of GCMs have been developed, 

and emissions scenarios have been redefined primarily on the basis of the radiative forcing effect of 

GHG concentrations in the atmosphere (earlier emissions scenarios were defined based on socio-

economic development trajectories).  This new combination of models and emissions scenarios is 

referred to as the fifth phase of the Coupled Model Intercomparison Project (CMIP5).  The new 

emissions scenarios applied by CMIP5 are referred to as Representative Concentration Pathways (RCPs), 

and identified by the radiative forcing value associated with a particular emissions schedule in terms of 

watts per square meter by 2100 (Vuuren et al. 2011).  In this review, we will present data for future 

bioclimate envelopes based on four circulation models and two RCPs (4.5 and 8.5).  These latest CMIP5 

climate projections will also serve as the basis for the forthcoming growth-and-yield modeling study. 
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To make informed projections of species or ecosystem responses to climate change, projections by 

GCMs need to be scaled down to provide climate variables at a scale relevant for distinguishing species 

distributions or physiological processes.  The down-sampling approaches used by the two groups of 

studies reviewed here are referenced in each of the respective bioclimate envelope publications (cited 

below). 

Approaches to assess vulnerability of trees and forests to future climate change 

In a review of approaches to estimate climate vulnerability, Rowland et al. (2011) offer two main types:  

 Spatially-explicit models using correlative associations or environmental variables; and  

 Evaluative frameworks that generate relative indices of climate change vulnerability.     

This report focuses primarily on comparing two studies using different approaches to the application of 

spatially-explicit models.   Both correlative statistical models and mechanistic process-based models rely 

upon several assumptions and have shortcomings.  These are discussed in more detail further below.  

Evaluative frameworks can provide greater coverage of topics and factors not addressed through these 

spatially-explicit modeling approaches, and are a valuable and important resource for more 

comprehensive climate change vulnerability assessments and adaptation planning. 

Evaluative frameworks relevant to the western Oregon study region considered in this report are 

available for comparison with projections of species distribution models.  For example, Devine et al. 

(2012) provide an assessment of 57 tree species covering several sub-regions across Oregon and 

Washington using scores for five risk factors: distribution; reproductive capacity; habitat affinity; 

adaptive genetic variation; and major insect and disease threats.  A similar spreadsheet tool designed 

for scientists in natural resource agencies which provides a Climate Change Vulnerability Index 

considering a species’ exposure to climate changes (using down-scaled climate projections) and its 

sensitivity to those changes based on 20 different factors is also available (Young et al. 2011).  It is worth 

noting that these evaluative frameworks can involve several subjective scoring and weighting systems, 

but we nevertheless encourage their consideration as one of many lines of evidence to support climate 

adaptation planning efforts. 

In the eastern US, a hybrid approach combining both statistical models and modifying factors drawn 

from an evaluative framework approach has been developed (Matthews et al. 2011).  The resulting 

projections for 134 different tree species, as well as several bird species, have been published online 

(USFS NRS Landscape Change Research Group 2014) and have been incorporated into several climate 

change adaptation and vulnerability assessments for six regional projects in midwestern and 

northeastern states (Northern Institute of Applied Climate Science 2015). 

Spatially-explicit modeling applications 

Although evaluative frameworks described above may offer a more comprehensive consideration of 

factors reasonably expected to affect a species’ distribution under climate change, these frameworks 

are not inherently spatial in application, and do not directly address locations within a study area that 

are most vulnerable to climate change, an important consideration for prioritizing climate adaptation 

and mitigation efforts (Rowland et al. 2011).   
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There are two main modeling approaches used to inform our understanding of current and future 

species distributions in a spatially-explicit manner: 

 Statistical models, also known as correlative, or empirical models 

 Mechanistic models, also known as process-based models 

Both of these approaches involve applying historically-observed relationships between species 

presence, abundance, or performance to identify the geographic areas (or ecological niches) that 

provide suitable conditions for a species to survive and grow.   

A review of species distribution models by Guisan and Thuiller (2005) provides a helpful distinction 

between these two modeling approaches using the concept of the ecological niche: 

 Process-based models apply physiological processes to simulate the ability of a species to survive 

given a set of abiotic/environmental variables.  These models enable prediction of all the areas 

which provide conditions suitable for a species to occur, known as the species’ fundamental niche. 

 Empirical models use statistical approaches to identify predictive relationships based on the 

correlation of a species’ presence/absence or abundance to observed climatic conditions and other 

environmental variables.  As these models are based on the observed occurrence of a species, which 

is known to be constrained by a variety of factors such as competition, dispersal, etc., these models 

represent a subset of the fundamental niche referred to as the realized niche.   

Generalized statistical and process-based models 

Both of these types of models can also be applied at the species level or at the level of plant 

assemblages or biomes.  There are several examples for the application of statistical niche-based models 

for predicting the suitable areas for biomes or plant assemblages (e.g., Hamann & Wang 2006; Rehfeldt 

et al. 2012; Wang et al. 2012).  Similarly, process-based models applied to predict vegetation types or 

classes, known as dynamic global vegetation models are also available.  The MC1 model is one such 

example for which future vegetation type projections under climate change have been published and 

are presented further below in this report (Bachelet et al. 2001). 

Bioclimate envelope modeling applied to tree species in the Pacific Northwest 

Several examples of species distribution and bioclimate envelope modeling have been published 

covering the Pacific Northwest.  Hamann and Wang (2006) and Wang et al. (2012) utilize statistical 

models to predict future occurrence of vegetation types in British Columbia which are then used to infer 

the realized niche that would be available to individual tree species under future climates.  The statistical 

approach of the Crookston et al. (2010) dataset, as well as the method used in this report for visualizing 

agreement or consensus in future climatic suitability projections are very similar to those of Wang et al. 

(2012).   

The future climatic suitability projections of Crookston et al. (2010) and additional data published by the 

Moscow Forest Science Laboratory (http://forest.moscowfsl.wsu.edu/climate/) have been used for 

climate change adaptation planning including in northeastern Oregon (Blue Mountains Adaptation 

Partnership 2014).  Another application of bioclimate envelope modeling using statistical models for 

http://forest.moscowfsl.wsu.edu/climate/
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management planning purposes can be found in several studies developing seed zones for Eastern white 

pine and Western larch in the US (Rehfeldt & Jaquish 2010; Joyce & Rehfeldt 2013) and for several 

species in British Columbia (Ying & Yanchuk 2006; Hamann, Gylander & Chen 2011). 

McKenney et al. (2007, 2011) developed projections of future climatic suitability for 130 tree species 

under three circulation models and two emissions scenarios from CMIP3.  These outputs from were 

prepared with a 10km x 10km grid cell resolution, and have been published online alongside numerous 

other species at http://planthardiness.gc.ca.  Unfortunately, these data are not available in a 

downloadable format for analysis within a Geographic Information System (GIS).  In addition, the 

10x10km grid cell resolution significantly constrains the ability for interpreting climatic suitability for 

tree species at finer scales than multi-state or regional extents.  Similarly, the statistics reported in these 

publications (as well as all the others reviewed) are generally reported as changes in the complete area 

of a particular species’ bioclimate envelope size across an entire region or continent, and thus offer very 

limited inference at scales equivalent to BLM Districts or Resource Areas that occupy only a portion of 

the modeled range. 

Two other recent modeling approaches (i.e., Coops et al. 2009, 2011; Crookston et al. 2010) have 

emerged with finer spatial resolution covering the PNW with substantial overlap in terms of individual 

tree species, circulation models, and emissions scenarios, enabling comparisons among these models.  

These approaches are investigated and presented in this report with a focus on the western Oregon 

BLM District extents, and described in greater detail in the description of methods used below.  Recently 

published datasets with future projections of potential vegetation types for the western US using 

version 2 of the MC1 dynamic global vegetation model and CMIP5 climate projections are also discussed 

(Bachelet 2014). 

A similar approach to statistically project climatic suitability for several tree species in the Pacific 

Northwest using CMIP3 climate projections and the MAXENT statistical program that were prepared by 

the GEOS Institute are available on the Databasin website (GEOS Institute 2013).  However, these 

projections do not yet appear to have been subject to peer review, and several important methods for 

generating them (e.g., baseline climate period, training data, etc.) are not described at this website.  

These maps may offer an additional source to compare to future climate projections discussed in more 

detail in this report, but we have not incorporated these datasets formally into the statistical and 

graphical comparative analysis of bioclimate envelopes conducted here. 

Assumptions, uncertainty, and tradeoffs in approaches to assess climate change impacts 

The application of statistical and process-based models to project potential responses of species to 

climate change is continually evolving within the scientific community, largely owing to a variety of 

assumptions embedded within each of the distinct modeling approaches, and the importance of the 

variety assumptions and variables found to drive species performance under a changing climate 

(Franklin & Miller 2009; Wiens et al. 2009).  As highlighted in a review by Pearson and Dawson (2003), 

despite the limitations imposed by the assumptions and uncertainty in species distribution models for 

future climatic suitability projections, these models remain “a useful first approximation as to the 

http://planthardiness.gc.ca/
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potentially dramatic impacts of climate change on biodiversity” so long as they are appropriately 

discussed with considerations of the uncertainty and geographic scale at which they may be applied. 

Both statistical and process-based models rely upon a variety of assumptions, and are occasionally 

presented without indications of the uncertainty in the predictive abilities, and often without clear 

discussion of the appropriate scale for interpretation and application.  Given the lack of data from the 

future which could serve to validate these models, the certainty of future bioclimate envelope 

projections using statistical models (as well as climate models themselves), including the appropriate 

geographic scale for interpretation is unquantifiable (Beale & Lennon 2012). 

Statistical models rely upon assumptions that species distributions are primarily determined based on 

climatic variables (in contrast to factors such as competition with other species), that current species 

distributions used as training data are at equilibrium with climatic variables, and that species migration 

over time is not constrained by travel distances (Araújo & Peterson 2012).  It is important to consider 

that these models generally rely upon an assumption that the relationship and interaction between 

biotic and abiotic variables are conserved into the future, but also that disturbances by humans and 

natural processes are also a common driver of current species distributions that may not be factored 

into the training data of species presence/absence used to build statistical relationships between 

climatic drivers and species habitat suitability. 

The relative importance of climatic variables as primary drivers of species distributions has been 

challenged by Clark et al. (2011) based on research on 40 tree species in the southeastern United States.  

Clark et al. (2011) assert that competition and differential responses to climate over time by species in 

different life history stages appear to be stronger predictors of species distributions than the spatial 

correlation of species presence or abundance and climate variables.  These findings highlight the 

importance of considering life history attributes when interpreting the outputs of species distribution 

models that do not account for these species qualities. Some mechanistic models, including gap models, 

are capable of incorporating the life history factors identified by Clark et al. (2011), but these have rarely 

been applied to projections of species suitability under climate change to date (Morin & Thuiller 2009). 

One aspect of a species’ life history that is often omitted in bioclimate envelope studies regards the 

consideration of a species’ regeneration niche, which describes the conditions under which a species will 

naturally regenerate.  An innovative study by Bell et al. (2014) used FIA plot data to evaluate climatic 

envelopes separately for seedlings and mature trees, and found significant divergence between the two.  

These authors further went on to conclude that climatic contractions can already be observed in the 

areas supporting the regeneration niche for six species considered.  The contraction of the regeneration 

niche indicates that if/when mature trees die or are removed, these ecosystems are likely to see limited 

natural regeneration by those species.  Although the regeneration niche is likely to play an important 

role in succession and natural regeneration of tree species in the future, it is worth noting that the 

datasets for bioclimate envelope projections reviewed in this report do not take this factor into account. 

A separate important factor controlling the ability for trees and forests to adapt to changing climatic 

conditions lies in the genetics and phenotypic plasticity of localized variants of individual species.  Most 
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approaches to bioclimate envelope modeling, including those datasets reviewed in more detail in this 

report, tend to treat a species as genetically and phenotypically homogenous across its range.  In reality, 

localized populations of trees are likely to exhibit varying degrees of adaptability that may or may not 

correspond to the full range of climatic conditions experienced throughout the species’ entire range.  In 

general, the limitation of bioclimate envelope projections to consider regions where a species variant is 

believed to occur constrains the range of climatic conditions for which that species will be predicted to 

suitable in the future.  For example Wang et al. (2012) demonstrate a much stronger projection of 

climatic unsuitability for trees in British Columbia when individual seed zones, ecological provinces, or 

ecoregions are used as the extent of training data to build a bioclimate envelope projection as opposed 

to using climatic conditions across the entire species range in training data. 

Bioclimate envelopes from statistical models relate the current or historical presence and/or absence of 

species or biomes to climatic variables.  The forward-projection of these envelopes relies upon the 

assumption that current relationships derived by these models between climatic variables and species 

presence/absence are preserved over time, often ignoring changes in biotic interactions with abiotic 

factors such as CO2 fertilization, altered pathogen or parasite conditions, and genetic evolution.  In cases 

where novel combinations of climatic conditions occur in the future, statistical models are unable to 

offer an informed prediction of suitability, as they have only been trained on correlations of historical 

climate conditions with current species occurrence.  Mechanistic models offer an important advantage 

to statistical models in this regard by being able to predict species responses to novel climatic conditions 

(Beale & Lennon 2012). 

Although process-based models offer great promise for evaluating future climatic suitability, they 

require a detailed mechanistic knowledge of the physiological responses of individual species to a 

complex variety of abiotic drivers, as well as the underlying data for each of those relevant drivers across 

the study area (e.g., soil water holding capacity, the presence or scale of CO2 fertilization by species, 

etc.), which are often unknown.  This tradeoff in process-based models is believed to be the primary 

factor limiting their broader application to challenges like predicting species distributions under climate 

change (Jeltsch et al. 2008).   

A major challenge in evaluating the performance of these models is that they are generally only 

available to be validated against observations of current species presence/absence or abundance, which 

represent the realized niche of a species (Beale & Lennon 2012).  Process-based models, which predict 

the fundamental niche of a species, are thus generally expected to predict a greater suitable area for a 

species.  This also corresponds to an increased likelihood that these process-based models would have 

greater error rates (i.e., errors of commission) in predicting current species presence in areas where a 

species could physiologically survive, but where other constraints such as competition with other 

species intervene (Cheaib et al. 2012).  According to Beale and Lennon (2012): “methods that identify 

the fundamental niche in preference to the realized niche are preferable, despite the greater 

uncertainty associated with their predictions, because the narrower precision of the realized niche 

model probably underestimates uncertainty.” 
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There are also a wide variety of sources of uncertainty that affect the confidence of bioclimate envelope 

models, and species distribution models more generally.  Beaumont et al. (2008) provide a helpful visual 

overview covering the primary sources of uncertainty that feed into modeling future bioclimate 

envelopes, reproduced in Figure 1.  

Figure 1:  Major sources of uncertainty in bioclimate envelope modeling 
as described by Beaumont et al. (2008)  

 

In general, there are three major groupings of sources of uncertainty identified by Beaumont et al. 

(2008): of future climate; of biological responses to climate and other environmental factors; and model 

parameterization and statistical uncertainty within the species distribution projections themselves.  
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Wiens et al. (2009) further describe the sources of model uncertainty including structural model 

uncertainty, the translation of niche associations into distributional probabilities by model algorithms, 

and the quantity and quality of training data including spatial and temporal extents, scales, and 

mismatches between datasets.  Although model uncertainty within species distribution models is 

commonly reported, the uncertainty related to future climate projections and biological responses to 

climatic variables are rarely reported alongside them. 

Reported divergence between process-based and statistical modeling outcomes 

Several recent studies offer side-by-side comparisons of process-based and statistical models for future 

tree species projections under climate change.  These studies consistently report that statistical models 

(and particularly the Random Forests model) are stronger than mechanistic models at predicting current 

species distributions based on correlated environmental variables, but that these statistical models also 

produce significantly larger predictions of shifts (and loss) of climatically-suitable ranges for most tree 

species than mechanistic models (Morin & Thuiller 2009; Keenan et al. 2011; Cheaib et al. 2012).    

These results are intuitive based on the consideration of the types of ecological niches predicted by 

these models.  Statistical models are unable to capture the phenotypic plasticity or local adaptation of 

tree species that may be captured in some mechanistic models (Morin & Thuiller 2009).  Sensitivity 

analysis performed by Cheaib et al. (2012) and Keenan et al. (2011) both identified rising CO2 

concentrations (captured in some mechanistic models with physiological responses of increased 

nutrient and water use efficiencies) as a major factor affecting the greater predictions of productivity 

and survival in mechanistic models compared to statistical models; this effect was not shared across all 

species, particularly where species distributions are more strongly limited by hard climatic factors (such 

as freezing tolerance). 

As mechanistic and correlative models are becoming more commonly applied and evaluated, 

recommendations for improving their accuracy and reliability are emerging, including the utilization of 

consensus-based or ensemble methods for correlative models (Prasad, Iverson & Liaw 2006; Marmion et 

al. 2009; Wang et al. 2012) along with emerging approaches to integrate mechanistic models or 

mechanistic features into correlative models or apply them both in an ensemble or consensus approach 

(Kearney & Porter 2009; Iverson et al. 2011).  Both of these approaches have been repeatedly 

demonstrated to offer greater confidence in predicting current species distributions, and the strength of 

mechanistic models to more confidently project a species’ fundamental niche under future climatic 

conditions is broadly recognized. 

Bioclimate envelope projections used in this report 

Before describing the specific methods applied by the datasets used in this study, it is important to 

clarify what these models are and are not projecting.  Bioclimate envelopes are projections into the 

future of climatically-suitable habitat for a species.  They are not direct projections of species 

distributions.  The climatic suitability of a particular location may be expected to significantly affect the 

long-term productivity or survival of a species, but these factors interact with several other important 

drivers that are not captured in these models to determine whether or not a particular species actually 

occupies that niche in the future. 
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Statistical approaches like that of Crookston et al. (2010) are trained to recognize the combination of 

climatic variables that currently correlate strongly with species presence and absence, representing a 

species’ realized niche or habitat.  In contrast, mechanistic models, including the 3PG model which is 

applied in combination with a simple decision tree approach by Coops et al. (2009, 2011) and Coops and 

Waring (2011) utilize a handful of environmental drivers to simulate a species’ physiological 

performance and identify the full geographic space capable of supporting the species, representing a 

species’ fundamental niche or potential habitat.  Neither of these approaches take into account the 

physiological response of trees to elevated CO2 concentrations, competition between tree species, 

differential responses of a tree species based on its life history, or limits on the ability for a species to 

physically migrate to newly suitable niche space.   

The Random Forests regression approach of Crookston et al. (2010)  

Beginning with the development of a new spline model to down-scale climate projections using local 

weather stations (Rehfeldt 2006), a multiple regression approach called Random Forests has been 

applied to generate bioclimate envelope maps with 1km x 1km scale for biomes (Rehfeldt et al. 2006) 

and later for 75 tree species covering North America (Crookston et al. 2010). 

Both the down-scaled climate projections as well as the species-specific bioclimate envelope data 

supporting these publications are publicly accessible and downloadable in GIS format from the Moscow 

Forestry Sciences Laboratory website (http://forest.moscowfsl.wsu.edu/climate). 

In brief, the Random Forests regression approach utilized by Rehfeldt et al. (2006) and Crookston et al. 

(2010) generates thousands of regression models utilizing different subsets of training data (Forest 

Inventory & Analysis (FIA) plots with species presence/absence) and historical climatic variables (1961-

1990 baseline).  Each of these regression models are treated as ‘votes’, and the proportion of votes 

predicting a species’ presence are interpreted as a “species viability score.”  More than 99.5% of all 

species observations within FIA plots for the species considered in this review occur in areas receiving a 

viability score above 0.5.  Scores below 0.5 are interpreted within these publications (as well as within 

the Climate-FVS growth-and-yield model) as a combination of climatic variables that are not suitable for 

a particular species. 

All maps of future projections of climatic suitability in this review (i.e., Map Sets 2-5) reflect a subset of 

the latest climate models and emissions scenarios from CMIP5.  In contrast, the graphs and tables 

comparing species-level bioclimate envelopes are limited to the overlapping GCMs and emissions 

scenarios between Coops et al. (2009, 2011), Coops and Waring (2011),  and Crookston et al. (2010), 

which are from CMIP3 (the CGCM3 growth model and emissions scenarios A2 and B1).  

The future projections of bioclimate envelopes by Crookston et al. (2010) include three individual GCMs 

(CCSM4: The Community Earth System Model, GFDLCM3: Geophysical Fluid Dynamics Laboratory, and 

http://forest.moscowfsl.wsu.edu/climate/
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HadGEM2ES: Met Office (UK)) as well as an Ensemble climate projection based on the combination of 17 

different GCMs1. 

The hybrid process-model and decision-tree approach of Coops et al. (2011) 

Statistical approaches such as the Random Forests regression modeling used in Crookston et al. (2010) 

lack the ability to incorporate direct physiological responses to environmental variables more commonly 

implemented in process-based models.  The appeal of a process-modeling approach is attractive in light 

of expectations that higher ambient concentrations of CO2, nitrogen deposition, and altered soil water 

availability may strongly influence physiological responses of plants to climate change.  In addition, 

process-based models offer the potential to illuminate how novel combinations of environmental and 

climatic variables could affect productivity.  This aspect of mechanistic models is a meaningful contrast 

to statistical models which build bioclimate envelopes based on the correlation of historically-observed 

climatic variables with species presence or absence.  The reliability of applying statistical models to 

novel environmental and climatic conditions is unknown. 

In an effort to incorporate the strengths of process-based models, which apply detailed physiological 

relationships relating a species’ productivity under any environmental conditions, Coops et al. (2009) 

present a hybrid approach combining a generic process model parameterized for Douglas-fir with a 

simple decision-tree statistical model.  In brief, Coops et al. (2009) utilize the 3PG process-model and 

simulate the productivity of Douglas-fir under historical climate conditions (1950-1976).  The effects of 

several climate variables on Douglas-fir’s growth are distilled into factors with wall-to-wall spatial 

coverage corresponding to what proportion of the maximum observed growth response for Douglas-fir 

occurs in any single grid cell given local environmental conditions.  These factors incorporate the 

differential effects of four environmental variables (soil water availability, deviations from an optimum 

temperature, vapor pressure deficit, and frost frequency), scaled between 0 and 1 based on their impact 

on Douglas-fir productivity.  These Douglas-fir-referenced factors are then used to build decision-trees 

for several other tree species using training data of presence/absence of these species from FIA plots. 

This method has since been applied by Coops and Waring (2011) and Coops et al. (2011) to predict 

bioclimate envelopes for 15 coniferous tree species.  It is important to note that at the time these 

research projects were ongoing, monthly climate projections were not incorporated to drive a process-

modeling for future climate projections.  That is, these studies do not apply process-modeling to future 

climate data; instead a single decision tree for each species derived from process-modeling of historical 

climate conditions is applied to future climate variables.  These projections use CMIP3 data and include 

the A2 and B1 emissions scenarios with the CGCM3 circulation model, down-scaled to 1km x 1km 

resolution.   

Although current climate suitability is presented in Coops et al. (2011) in terms of resilience or 

vulnerability to climate change using a threshold defined by the probability of occurrence from process-

                                                           
1
   The 17 GCMs included in the Ensemble are: BCC-CSM1-1; CCSM4; CESM1-CAM5; CSIRO-Mk3-6-0; FIO-ESM; 

GFDL-CM3; GFDL-ESM2G; GFDL-ESM2M; GISS-E2-R; HadGEM2-AO; HadGEM2-ES; IPSL-CM5A-LR; MIROC5; MIROC-
ESM-CHEM; MIROC-ESM; MRI-CGCM3; NorESM1-M.  More information about the modeling approach of Crookston 
et al. (2010) is available online at http://forest.moscowfsl.wsu.edu/climate/future/details.php. 

http://forest.moscowfsl.wsu.edu/climate/future/details.php
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modeling with climatic data from 1976-2006, future projections of suitability in this dataset do not rely 

on a threshold process for declaring suitability or unsuitability.  Instead, the annual average climatic 

values for 2020, 2050, and 2080 were plugged into a single decision tree for each species and given a 

binary suitable/unsuitable rating for each pixel (Coops and Waring, personal communication).   Much of 

the data from these publications is publicly available for download in proprietary ArcGIS formats at 

http://databasin.org.   

The MC2 dynamic global vegetation model approach of Bachelet (2014) 

Data from the Dynamic Global Vegetation Model MC1, version 2 (also referred to as MC2) is also 

available with projections of potential vegetation types (as opposed to individual species) using a 

process-model approach.  As described in Bachelet (2001), the MC1 model contains a biogeography 

module that predicts the composition of deciduous and evergreen trees, as well as C3 and C4 grasses 

and classifies these combinations into one of 21 different vegetation classes based on monthly 

temperature and precipitation variables.  Although MC2 also contains modules to simulate 

biogeochemical cycling as well as wildfire, these modules are not described in detail in this report. 

To generate future projections of potential vegetation types under climate change, Bachelet (2014) 

utilize climate data from 10 CMIP5 GCMs2 and emissions scenarios RCP 4.5 and RCP 8.5 that were down-

scaled using a process known as Multivariate Adaptive Constructed Analogs (Abatzoglou & Brown 2012).  

The MC2 model was run to generate projections of potential vegetation types with a resolution of 4km 

pixels. 

Methods for comparing bioclimate envelopes and mapping consensus  

To evaluate the level of agreement between these two data sources, maps and graphics were generated 

for at least six major tree species identified by BLM staff: Douglas-fir, Western hemlock, Western 

redcedar, Ponderosa pine, Grand fir, and Engelmann spruce.  Where space allows, additional species 

have been added to tables and graphs for additional context.  The maps presented in Map Set 1 show 

the predictions of suitability/vulnerability by Coops et al. (2011) based on baseline climate data from the 

1976-2006 timeframe, while those from Crookston et al. (2010) are based on climate data from the 

1961-1990 timeframe. 

Geospatial and statistical analysis comparing these two datasets in tables and graphs was constrained to 

the geographic extent of western Oregon BLM District boundaries.  Graphs and tables are utilized to 

describe the level of agreement between these data sets under the CGCM3 model and A2 and B1 

emissions scenarios.   

In this review, maps of future bioclimatic niches are limited to the latest CMIP5 climate projections  

derived using the same process described in Crookston et al. (2010) and downloaded from the Moscow 

Forestry Sciences Lab website. 

                                                           
2
 The 10 GCMs considered in this modeling study include: BCC-CSM, CCSM4, BNU-ESM, MIROC-ESM, CSIRO, GFDL-

ESM2M, GFDL-ESM2G, MIROC-ESM-CHEM, CanESM2, and CNRM-CM5. 

http://databasin.org/
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Statistical, graphical, and spatial assessments of model accuracy and agreement 

Metrics useful for assessing of the accuracy of these two models in terms of predicting current species 

presence and absence are presented in Table 1 and displayed in Figure Set 2.  In particular, measures of 

prediction errors compared to actual presence absence for FIA plots within the western Oregon BLM 

District extent are shown along with the True Skill Statistic (Allouche, Tsoar & Kadmon 2006), which 

combines ratings of model performance on both errors of omission and commission. 

To quantify the level of agreement between the Coops et al. (2011) current habitat suitability ratings 

and the Crookston et al. (2010) current species viability scores, the Concordance Correlation Coefficient 

developed by Lin (1989, 2000) is employed.  In brief, this metric was originally developed to compare 

distinct scoring or rating systems for inter-compatibility and reproducibility, and describes the 

correlation of two variables to a 1:1 relationship. 

To graphically display the agreement/disagreement between current and future ratings of bioclimate 

envelopes between Coops et al. (2011) and Crookston et al. (2010), Figure Sets 3 and 4 utilize a bubble 

graph layout similar to a ‘confusion matrix’.  These graphics display the acreage (in thousands of acres) 

as classified by each rating system shown along the x-axis and y-axis.  The gray-shaded cells in these 

tables represent agreement between the two rating systems. 

A preponderance of acreage in the lower right-

hand cell indicates the rating system on the x-

axis is more ‘optimistic’ in terms of species 

suitability than the rating system on the y-axis.  

Conversely, a preponderance of acreage in the 

upper left-hand cell indicates the rating system 

on the x-axis is more ‘pessimistic’ than the rating 

system along the y-axis.  Graphs that show a 

preponderance of acreage within the lower left-

hand and/or upper-right hand cells indicate 

strong agreement between the two models.  In 

Figure Set 4, the rating system for Crookston et 

al. (2010) is converted to a binary rating, with 

values above/below a “species viability score” of 

0.5 rated as suitable/unsuitable. 

Maps covering the state of Oregon in Map Set 1 provide the location of FIA plots where each species 

was observed to be present or absent, overlaid with current habitat suitability as defined by each data 

source.  It is worth noting the geographic locations of FIA plots are ‘fuzzed’ to protect the identity of 

landowners and the integrity of these plots.  These ‘fuzzed’ locations are used for calculating model 

prediction accuracy for current presence/absence shown in Table 1 and displayed in Map Set 1. 

Example of confusion matrix used in Figure Sets 3 and 4 
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Mapping consensus among future bioclimate envelope projections of Crookston (2010) and 

Bachelet (2014) 

To map future bioclimate envelopes projected by Crookston et al. (2010), we show the level of 

agreement or consensus among several different GCMs similar to the approach of Wang et al. (2012), 

although we do not combine multiple RCPs/emissions scenarios in this study.  Areas are mapped 

according to whether the results are shared across all GCMs (unanimous agreement), or whether one or 

more GCMs produce conflicting projections of climatic suitability.  These are displayed in Map Set 2.  

Map Set 3 displays the projected expansion of several species that are predicted to see the largest 

growth in newly climatically-suitable habitat in western Oregon due to future climate change with a 

visualization of the level of agreement among GCMs. 

Projections of specific potential vegetation types by the MC2 model under high and low emissions 

scenarios are provided in Map Set 4, where the most commonly chosen potential vegetation type 

predicted among 10 separate GCMs is displayed.  In Map Set 5, the level of agreement/disagreement in 

these projections among 10 GCMs is visualized to identify areas where potential vegetation type 

changes (or retention) are commonly predicted across these GCMs.  

Results 

Comparing Coops and Crookston 

Current habitat suitability, Coops v. Crookston 

The level of agreement between Coops and Crookston, as indicated by the Concordance Correlation 

Coefficient based on ratings of current climatic suitability, showed relatively poor agreement for all 

species (see Table 1).  The strongest concordance was observed for Douglas-fir, followed by Western 

hemlock and Western redcedar, and Ponderosa pine.  Validation statistics we calculated using FIA 

presence/absence for each species within the extent of the western Oregon BLM District boundaries 

suggest that the Random Forests approach applied by Crookston et al. (2010) is generally more accurate 

both in terms of predicting presence as well as absence of most tree species.  Specific exceptions include 

better performance by Coops et al.  (2011) at predicting species presence for Douglas-fir and Western 

redcedar (particularly when based on 1976-2006 climate data), and predicting species absence for 

Engelmann spruce. 

Crookston et al. (2010) showed better prediction performance for all species as measured by the True 

Skill Statistic (see Table 1 and Figure Set 2).  For the most widespread species (e.g., Douglas-fir, Western 

hemlock, Western redcedar, and Ponderosa pine), Coops et al. (2011) showed lower specificity (less 

adept at predicting species absence) than Crookston et al. (2010); depending on whether the 1976-2006 

or 1950-1976 climate data are used, Coops et al. (2011) showed comparable sensitivity (ability to predict 

species presence) to Crookston et al. (2010). 

In general, the Random Forests approach applied by Crookston et al. (2010) appears to spatially over-fit 

climatic suitability to FIA plot locations used as training data.  This is apparent in maps of current 

suitable ranges for Douglas-fir and Western redcedar that tightly fit observations in FIA plots, but which 
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suggest that the climate within the Willamette Valley would be unsuitable for Douglas-fir and that many 

locations along the Coast Range in western Oregon would be unsuitable for Western redcedar.  In 

contrast, the process-modeling approach of Coops et al. (2011) commonly predicts suitability in many 

locations where that species is not observed in FIA plots (see Map Set 1).  The overlaid species 

distribution ranges of Little (1971) help provide a reference for more broadly defined zones believed to 

historically support these species. 

The current bioclimate envelope maps by Crookston et al. (2010) tightly fit the FIA plot data.  The 

projections by Coops et al. (2011) are more prone to “false-positives” where the presence of a species is 

predicted by the model, but not observed in any nearby FIA plots.  This is indicated statistically by the 

consistently larger commission error rates in Table 1 for most species under the model of Coops et al. 

(2011).   This aspect can also be observed in Map Set 1.  For example, Coops et al. (2011) bioclimate 

envelopes predict suitability for Douglas-fir in southern Oregon east of the Cascade Range, and for 

Western hemlock and Western redcedar along the SW Oregon coast, despite the general absence of 

these species from FIA plots in these areas.
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Table 1. Current habitat suitability error rates and agreement within BLM District Extent:  
Comparing Coops et al. 2011 and Crookston et al. 2010 predictions of presence/absence at FIA plot 
locations. 
 

Species 

Commission Error  
(predict presence when absent) 

Omission Error 
(predict absence when present) 

True Skill Statistic† 

Concordance 
Correlation 
Coefficient* 

Coops  
et al. 2011 

Crookston 
et al. 2010 

Coops  
et al. 2011 

Crookston 
et al. 2010 

Coops  
et al. 2011 

Crookston 
et al. 2010 

1976-
2006 

1950-
1976 

1961- 
1990 

1976-
2006 

1950-
1976 

1961- 
1990 

1976-
2006 

1950-
1976 

1961- 
1990 

Douglas-fir 77.1% 91.9% 44.1% 0.7% 0.7% 2.4% 0.53 0.44 0.65 0.88 

Western hemlock 39.9% 66.5% 30.7% 31.1% 3.8% 12.8% 0.29 0.49 0.58 0.81 

Western redcedar 93.7% 46.8% 31.7% 0.7% 17.0% 19.7% 0.42 0.40 0.49 0.81 

Ponderosa pine 32.5% -- 16.2% 14.6% -- 7.5% 0.55 -- 0.77 0.76 

Grand fir 15.0% 20.8% 14.1% 84.7% 82.5% 51.3% 0.01 -0.05 0.40 0.13 

Engelmann spruce 0.9% 1.7% 3.5% 88.9% 94.4% 50.0% 0.45 0.27 0.59 0.46 

Noble fir 19.6% 29.4% 8.9% 22.5% 7.5% 26.3% 0.58 0.66 0.67 0.67 

Pacific silver fir 22.0% 22.0% 9.5% 25.2% 21.1% 6.5% 0.53 0.57 0.84 0.53 

Sitka spruce 10.6% 18.6% 5.0% 12.6% 38.7% 3.9% 0.77 0.45 0.91 0.75 

Notes: †The True Skill Statistic combines the proportion of commission and omission errors to give a rating of model prediction accuracy that 
ranges between -1 and +1, with +1 corresponding to perfect prediction, 0 to random prediction, and -1 to completely inaccurate prediction; it is 
recommended by Allouche et al. (2006) for accuracy assessment in species distribution models.   
*The Concordance Correlation Coefficient, developed by Lin (1989, 2000) describes the level of agreement between two variables.  The 
coefficient presented here compares the 1976-2006 timeline from Coops et al. (2011) with Crookston et al. (2010).  McBride (2005) has 
recommended the following interpretation of the Concordance Correlation Coefficient in terms of the strength of agreement: 
>0.99 = almost perfect | 0.95-0.99 = substantial | 0.90-0.95 = moderate | <0.90 = poor 
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Figure Set 2:  Prediction accuracy of species presence/absence: 
comparing Coops et al. 2011 and Crookston et al. 2010 

  
 

   

Note: The True Skill Statistic combines ratings of model Specificity and Sensitivity.  As described by Allouche et al. (2006): “Sensitivity is the 
proportion of observed presences that are predicted as such, and therefore quantifies omission errors. Specificity is the proportion of observed 
absences that are predicted as such, and therefore quantifies commission errors.” 



 

21 

Note: These maps compare estimates of current climatic suitability based on statistical modeling using 
FIA plots as training data.  Climatic suitability is not synonymous with species distributions.  These maps 
offer a sense of how well the suitability rating of each study fits actual field observations of species 
presence and absence.  For context, the species range distribution of Little (1971) is also overlaid. 

Map Set 1: Fit of current bioclimate envelope models with inventory data 
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Note: These maps compare estimates of current climatic suitability based on statistical modeling using 
FIA plots as training data.  Climatic suitability is not synonymous with species distributions.  These maps 
offer a sense of how well the suitability rating of each study fits actual field observations of species 
presence and absence.  For context, the species range distribution of Little (1971) is also overlaid. 

Map Set 1 (continued) 
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Note: These maps compare estimates of current climatic suitability based on statistical modeling using 
FIA plots as training data.  Climatic suitability is not synonymous with species distributions.  These maps 
offer a sense of how well the suitability rating of each study fits actual field observations of species 
presence and absence.  For context, the species range distribution of Little (1971) is also overlaid. 

Map Set 1 (continued) 
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Note: These maps compare estimates of current climatic suitability based on statistical modeling using 
FIA plots as training data.  Climatic suitability is not synonymous with species distributions.  These maps 
offer a sense of how well the suitability rating of each study fits actual field observations of species 
presence and absence.  For context, the species range distribution of Little (1971) is also overlaid. 

Map Set 1 (continued) 
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Note: These maps compare estimates of current climatic suitability based on statistical modeling using 
FIA plots as training data.  Climatic suitability is not synonymous with species distributions.  These maps 
offer a sense of how well the suitability rating of each study fits actual field observations of species 
presence and absence.  For context, the species range distribution of Little (1971) is also overlaid. 

Map Set 1 (continued) 
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Note: These maps compare estimates of current climatic suitability based on statistical modeling using 
FIA plots as training data.  Climatic suitability is not synonymous with species distributions.  These maps 
offer a sense of how well the suitability rating of each study fits actual field observations of species 
presence and absence.  For context, the species range distribution of Little (1971) is also overlaid. 

Map Set 1 (continued) 
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Vulnerability and resilience in the Coops dataset 

In Coops et al. (2011) and Coops and Waring (2011), the authors provide a rating system to indicate the 

locations that, as of 2006, are vulnerable or resilient to climate change for each species.  The ratings 

used in this review are from Coops et al. (2011), which were derived based on the process-modeling for 

Douglas-fir and the application of Douglas-fir referenced decisions trees to predict presence/absence for 

other species from 1976-2006; those grid cells where the climate did not support the growth of the 

species in 50% of the years modeled were declared vulnerable to climate change.   

Although the distinction between this threshold-based rating for historical and current suitability with 

future projections was not apparent from the journal article itself, personal communication with both 

Nicholas Coops and Dick Waring helped elaborate the process described earlier for predicting habitat 

suitability under future climate scenarios.  As described above, although current climate suitability is 

presented in Coops et al. (2011) in terms of resilience or vulnerability to climate change using a 

threshold defined by the probability of occurrence from process-modeling with climatic data from 1976-

2006, future projections of suitability in this dataset do not rely on a threshold process for declaring 

suitability or unsuitability.  Instead, the annual average climatic values for 2020, 2050, and 2080 were 

plugged into a single decision tree for each species and given a binary suitable/unsuitable rating for each 

pixel (Coops and Waring, personal communication). This difference in approach between current rating 

systems and future rating systems within this study suggest that the validation statistics presented in 

the original publication, as well as in this review, offer no meaningful inference with which to gauge the 

reliability of the future projections of bioclimate envelopes.   

A particularly confounding aspect of these current vulnerability/resilience ratings is the apparent conflict 

with both near-term and long-term future climate projections of Coops et al. (2011).  For example, as 

shown in Figure Set 3, more than six million acres classified as ‘vulnerable’ for Western hemlock in 2006 

were re-classified as ‘suitable’ by 2020.  For Western redcedar, more than 950,000 acres classified as 

‘vulnerable’ in 2006 were reclassified as ‘suitable’ in 2020.  There is no published explanation for this 

apparently inconsistent model behavior in the Coops et al. (2011) future projections that predict 

suitability under climate change at the same time these same areas have already been rated as 

vulnerable in 2006.  

Through further personal correspondence with the authors, we learned that these authors suggest the 

use of annual averages for future climate suitability ratings are likely driving a more error-prone rating 

of future climatic suitability due to the absence of monthly climate data.  The authors report being 

“particularly excited about the current stress predictions” of vulnerability/resilience and have published 

additional research indicating that the current vulnerable ranges identified in their bioclimate envelope 

research are already showing increased disturbance detected via satellite imagery (Waring et al. 2011).  

Based on these communications, we believe the future climate envelope projections of Coops et al. 

(2011) suffer from insufficient statistical rigor and fail to provide statistical validation of this same 

approach used for future suitability projections on current species presence/absence.  Together, we 

believe these significantly question the confidence in their previously published projections of future 

climate suitability, and that their ratings of current vulnerability/resilience are likely to be more reliable 

indicators of shifting habitat suitability due to climate change.  
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Figure Set 3. Correspondence of Coops et al. 2011 current and future habitat 
suitability ratings. 

  

  

  

Note: Values inside or below each bubble indicate thousands of acres as classified by the rating systems 
indicated on the x- and y-axes of each graph. 
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Figure Set 4.  Agreement/Disagreement between Crookston et al. 2010 and 
Coops et al. 2011 for future climatic suitability for several tree 
species in 2050-60. 

  

  

  

Note: Values inside or below each bubble indicate thousands of acres as classified by the rating systems 
indicated on the x- and y-axes of each graph. 
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Future habitat suitability, Coops v. Crookston 

The Coops et al. (2011) future bioclimate envelope projections are generally more ‘optimistic’ in 

comparison to Crookston et al. (2010) in terms of broad-scale suitability for several species across the 

extent of BLM’s Western Oregon district boundaries.  In particular, prominent disagreement is apparent 

in future projections for Douglas-fir, Western hemlock, and Western redcedar.  For example, across the 

22.25 million acres of land within the BLM Western Oregon district boundaries, Crookston et al. (2010) 

project just under 12 million acres as suitable for Douglas-fir under the B1 scenario by 2060 while Coops 

et al. (2011) project over 21 million suitable acres in 2050. 

Maps of future habitat suitability to be used in Climate-FVS modeling 

Map Set 2 presents the level of agreement in habitat suitability for each species by 2060 based on 

climate projections of four different GCMs for each emissions scenario (RCP 4.5 and 8.5).  All of the data 

displayed in these maps were produced by Nicholas Crookston using the process described in Crookston 

et al. (2010), albeit using updated GCMs and emissions scenarios from CMIP5. 

There is generally unanimous agreement across GCMs and emissions scenarios that the climate will 

remain suitable for Douglas-fir along the Cascade Range, but become unsuitable in the Elkhorn 

Mountains along the southern and western range of the Blue Mountains in northeastern Oregon, in 

many locations near the Pacific Coast, and scattered along the I-5 corridor between Roseburg and 

Medford in southern Oregon.  Under the low emissions scenarios, all four GCM’s climate projections 

suggest climatic suitability for Douglas-fir along the Coast Range and into southern Oregon.  Under the 

high emissions scenario, there is disagreement among the models regarding the suitability of the 

southern extent of the Coast Range and the Klamath Mountains, but unanimous agreement among the 

models that the coast becomes unsuitable, as well as increased areas of unsuitability along the route 

from Roseburg to Medford in southern Oregon.  The unanimous projection of an expanded range for 

Douglas-fir along the eastern face of the Cascade Range from central to southern Oregon is present in 

both low and high emissions scenarios, although the high emission scenario shows a pronounced 

expansion of Douglas-fir climatic suitability into the BLM Lakeview District. 

Western hemlock and Western redcedar show dramatic projected declines in future climatic suitability 

in both low and high emissions scenarios.  These projected declines in suitable climate spread broadly 

across the Coast Range and the southern extent of these species’ historical ranges along the Cascade 

Range.  These projections indicate a northward shift in the climatic conditions suitable for these species 

along the Cascades. 

For Ponderosa pine, there is unanimous agreement across climate models that currently suitable areas 

will remain suitable along the eastern edge of the Cascade Range and the eastern range of the Klamath 

Mountains in southern Oregon at least through 2060.  These models generally agree that future climate 

will become increasingly unsuitable for Ponderosa pine along the southern extent of the Elkhorn 

Mountains within the Blue Mountains Range.  There is disagreement among the models regarding the 

suitability for Ponderosa pine in central Oregon south of La Pine.  The future climate conditions 

simulated by all four GCMs unanimously project unsuitable climate for Grand fir and Engelmann spruce 

throughout these species’ current ranges in western Oregon. 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, which is one of 

several factors that affect species distributions.  These maps help answer the question: “How similar are future climatic conditions in each location 

to the places where a species currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species 

over time by interacting with many other important environmental and physiological factors not represented here. 

Map Set 2:  Future bioclimate envelopes for several tree species 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, which is one of 

several factors that affect species distributions.  These maps help answer the question: “How similar are future climatic conditions in each location 

to the places where a species currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species 

over time by interacting with many other important environmental and physiological factors not represented here. 

Map Set 2 (continued) 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, which is one of 

several factors that affect species distributions.  These maps help answer the question: “How similar are future climatic conditions in each location 

to the places where a species currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species 

over time by interacting with many other important environmental and physiological factors not represented here. 

Map Set 2 (continued) 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, which is one of 

several factors that affect species distributions.  These maps help answer the question: “How similar are future climatic conditions in each location 

to the places where a species currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species 

over time by interacting with many other important environmental and physiological factors not represented here. 

Map Set 2 (continued) 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, which is one of 

several factors that affect species distributions.  These maps help answer the question: “How similar are future climatic conditions in each location 

to the places where a species currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species 

over time by interacting with many other important environmental and physiological factors not represented here. 

Map Set 2 (continued) 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, which is one of 

several factors that affect species distributions.  These maps help answer the question: “How similar are future climatic conditions in each location 

to the places where a species currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species 

over time by interacting with many other important environmental and physiological factors not represented here. 

Map Set 2 (continued) 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, which is one of 

several factors that affect species distributions.  These maps help answer the question: “How similar are future climatic conditions in each location 

to the places where a species currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species 

over time by interacting with many other important environmental and physiological factors not represented here. 

Map Set 2 (continued) 

 
 



 

38 
 

Projected shifts in acreage suitable for many species across western Oregon 

Figure Set 5 provides a broad overview of the projected changes in acreage of habitat suitability in 

western Oregon for multiple species.  Consistent with results reported earlier by McKenney et al. (2007), 

hardwood species appear to gain millions of acres of climatically-suitable habitat.  Several commercially 

important conifer species are projected to lose the majority of their climatically-suitable ranges within 

western Oregon, including Western hemlock, Western redcedar, Pacific yew, Incense cedar, and Sugar 

pine in both low and high emissions scenarios. 

Eight hardwood species along with Knobcone pine were projected to experience broad gains in 

climatically suitable habitat across western Oregon (see Figure Set 5 and Map Set 3). White alder and 

Oregon white oak both showed substantial areas along the east side of the Coast Range that were 

unanimously projected to become suitable by 2060. California laurel, Knobcone pine, and Canyon live 

oak showed disagreement among models, but had one or more projecting newfound suitability along 

the Willamette Valley and Coast Range.   

Some of these species show non-linear responses to climatic suitability based on emissions scenarios.  

For example, under the low emissions scenario, there was virtually no unanimous projection of 

expanded suitability for Knobcone pine, but in the high emissions scenario, Knobcone pine was 

unanimously projected to have newly suitable range on the western Klamath Mountains; in contrast, 

California laurel was projected unanimously to have new suitable range in the western Klamath 

Mountains under the low emissions scenario, but not in the high emissions scenario.     
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Figure Set 5:  Change in bioclimate envelopes for several tree species 
within western Oregon BLM district boundaries 

 

 
Note: Bars represent the average across four general circulation models (GCMs), in millions of acres.  Error bars 
indciate the minimum and maximum change estimated among these GCMs. 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, specifically for 

areas that are currently modeled as climatically unsuitable for the species.  Climatic suitability is one of several factors that affect species 

distributions.  These maps help answer the question: “How similar are future climatic conditions in each location to the places where a species 

currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species over time by interacting 

with many other important environmental and physiological factors not represented here. 

Map Set 3:  Projected expansion of climatic suitability beyond historical range for several species 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, specifically for 

areas that are currently modeled as climatically unsuitable for the species.  Climatic suitability is one of several factors that affect species 

distributions.  These maps help answer the question: “How similar are future climatic conditions in each location to the places where a species 

currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species over time by interacting 

with many other important environmental and physiological factors not represented here. 

Map Set 3 (continued) 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, specifically for 

areas that are currently modeled as climatically unsuitable for the species.  Climatic suitability is one of several factors that affect species 

distributions.  These maps help answer the question: “How similar are future climatic conditions in each location to the places where a species 

currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species over time by interacting 

with many other important environmental and physiological factors not represented here. 

Map Set 3 (continued) 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, specifically for 

areas that are currently modeled as climatically unsuitable for the species.  Climatic suitability is one of several factors that affect species 

distributions.  These maps help answer the question: “How similar are future climatic conditions in each location to the places where a species 

currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species over time by interacting 

with many other important environmental and physiological factors not represented here. 

Map Set 3 (continued) 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, specifically for 

areas that are currently modeled as climatically unsuitable for the species.  Climatic suitability is one of several factors that affect species 

distributions.  These maps help answer the question: “How similar are future climatic conditions in each location to the places where a species 

currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species over time by interacting 

with many other important environmental and physiological factors not represented here. 

Map Set 3 (continued) 
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Note: These maps do not represent predicted future species distributions.  These maps show future climatic suitability, specifically for 

areas that are currently modeled as climatically unsuitable for the species.  Climatic suitability is one of several factors that affect species 

distributions.  These maps help answer the question: “How similar are future climatic conditions in each location to the places where a species 

currently grows?”  Changes in climatic suitability should be expected to affect the growth and/or mortality of species over time by interacting 

with many other important environmental and physiological factors not represented here. 

Map Set 3 (continued) 
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Maps of future potential vegetation types by MC2 

Map Set 4 shows the most commonly chosen forested potential vegetation type for each pixel on the 

map among the 10 different GCMs evaluated in the MC2 study.  The projections of future potential 

vegetation types from 2035-2060 by MC2 are fairly similar under both the low (RCP 4.5) and high (RCP 

8.5) emissions scenarios.  In general, MC2 projections suggest broad shifts in potential vegetation types 

across Oregon.  Subalpine forest is expected to nearly disappear across the state, with small areas in the 

Blue Mountains and the Cascade Range remaining by 2060.  Maritime evergreen needleleaf forests are 

projected to shift northward and be replaced in their southern extent by temperate cool mixed forests.  

The range of temperate evergreen needleleaf forests is expected to expand beyond current distributions 

along the Cascade Crest further eastward and southward toward the Klamath Basin and southwest into 

the Klamath Mountains, as well as south and westward from the Blue Mountains in northeastern 

Oregon.  These areas of expansion for temperate evergreen needleleaf forest are projected to occur as 

areas that are currently non-forest shift to become suitable for forest vegetation.  Along the southwest 

Oregon Coast, temperate cool mixed forests are expected to be increasingly suitable for replacement by 

subtropical mixed forests. 

Map Set 5 shows the level of agreement among projections from the 10 GCMs evaluated by MC2 as to 

whether a change from the current/historical forested potential vegetation types is observed by 2060.  

The most densely clustered zones of unanimous agreement of vegetation type changes are found in 

southwestern Oregon running from the coast through the Klamath Mountains and the southern extent 

of the Cascade Range.   Additional hotpots where vegetation type change is projected unanimously can 

be observed ringing the eastern edge of the Willamette Valley where maritime evergreen needleleaf 

forests are expected to give way to temperate cool mixed forest.  Areas where a majority of GCMs led to 

projected vegetation type changes (as opposed to unanimous) are spread broadly throughout the 

Willamette Valley and southwestern Oregon.  Along the eastern flank of the Cascade Range and in the 

Blue Mountains, there was commonly unanimous projection of retention of the current temperate 

evergreen needleleaf forest.
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Note: These maps do not represent predicted future species distributions.  These maps show the most commonly predicted Potential 

Vegetation Type by the MC2 Dynamic Global Vegetation Model across 10 different GCMs. These maps may be helpful for identifying geographic 

locations where climate change is expected to introduce conditions that are better suited for different types of vegetation than currently exist.  Only 

those areas classified as forested potential vegetation types are shown, all other potential vegetation types have been hidden from display. 

Map Set 4  
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Note: These maps do not represent predicted future species distributions.  These maps show the level of agreement in projected change to 

current Potential Vegetation Types by the MC2 Dynamic Global Vegetation Model across 10 different GCMs under low and high emissions scenarios.  

These maps may be helpful for identifying geographic locations where climate change is expected to introduce conditions that are better suited for 

different types of vegetation than currently exist.  The level of agreement shown here only reflects areas that are currently/historically classified as 

forest, all other potential vegetation types have been hidden from display. 

Map Set 5  
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Discussion 

Assessing confidence in estimates of current climatic suitability 

The Random Forests approach applied by Crookston et al. (2010) more tightly fits current 

presence/absence data from forest inventory plots; however, the tightness of fit also suggests that areas 

with suitable climates where that species has not been observed in FIA data may be omitted from 

current and future bioclimate envelopes.  This aspect of Random Forests seems likely to increase the 

emergence of a bias towards overly-sensitive or pessimistic future bioclimate envelopes, particularly in 

cases where the future climatic variables fall outside the range observed historically and where the 

species has been documented in FIA plots.   

Random Forests and similar statistical approaches will interpret species absence in FIA training data as 

being climatically-driven.  For example, in areas such as the Willamette Valley, FIA plots where Douglas-

fir are not observed are used to build regression trees that would extrapolate climatic unsuitability for 

Douglas-fir in other areas where similar climate variables occur where FIA plot data is not available.  

Since species presence/absence is also driven by additional variables beyond climatic conditions alone 

(e.g., agricultural land-use in the Willamette Valley), the interpretation of this region as being 

climatically unsuitable for Douglas-fir contrasts with common knowledge that Douglas-fir is indeed 

observed throughout this area and that the climate is indeed suitable for its growth.  In future 

projections, if/when any other locations come to resemble the climatic conditions of the Willamette 

Valley, Random Forests and similar purely statistical approaches will map those areas as climatically 

unsuitable.  We believe there is likely to be a substantial amount of ‘false negatives’ introduced in this 

approach to training regression models, and that this behavior likely contributes to the over-prediction 

of future climatic unsuitability for several species. This tendency in purely statistical models is confirmed 

by studies that have compared their projections with those of process-based models (Morin & Thuiller 

2009; Rowland et al. 2011; Cheaib et al. 2012). 

The estimation of current climatic resilience/vulnerability by Coops et al. (2011) and Coops and Waring 

(2011) show broader ranges of climatic suitability than Crookston et al. (2010) that go beyond the range 

of observed species presence/absence seen in FIA plots, but this expanded range is consistent with the 

recognition that the Coops approach models the fundamental niche for these species while Crookston 

models the realized niche for these species. 

Methodological concerns for Coops bioclimate envelope projections 

The application of physiological mechanistic models to project future bioclimate envelopes offers great 

promise as an alternative or complement to statistical models.  Nevertheless, the hybrid approach as 

applied by Coops et al. (2011) for future bioclimate envelope projections (in contrast to the approach 

they use for current vulnerability/resilience) appears to be significantly limited by the use of annual 

average climate data, the use of individual years to make projections, and the application of only one 

decision tree per species to project climatic suitability or unsuitability .  This approach to future 

projections deviates substantially from the methodology described for historical and current projections 

of suitability for which model validation data were reported in Coops et al. (2009) and Coops et al. 
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(2011).  Two lines of evidence draw into question the confidence of the future bioclimate envelope 

projections of Coops et al. (2011):  

 First, areas identified as vulnerable in 2006 to climate change have since seen increased 

disturbance as reported by Waring et al. (2011), indicating that these vulnerability ratings do 

offer meaningful insights into the observed vulnerability of forest in these areas.   

 Second, there is an apparent inconsistency of current vulnerability estimates with future 

suitability ratings (i.e., many areas identified as currently vulnerable are shown in future high 

emissions scenarios as suitable).  This inconsistency is particularly apparent for Western 

hemlock and Western redcedar as shown in Figure Set 3. 

Taken together, these concerns raise strong doubts over the usefulness of the future bioclimate 

envelope projections published by Coops et al. (2011) for drawing inferences about the ongoing and 

expected shifts in suitable ranges for these species under climate change.  These methodological issues 

do not extend to the ratings of current vulnerability (Coops & Waring 2011) or historical ranges (Coops 

et al. 2009, 2011), which are consistent with the methods and validation statistics reported. 

Broad changes project for climatic suitability for many tree species 

Widespread losses of climatic suitability for several species 

The current projections of vulnerability for tree species by Coops and Waring (2011) as well as the future 

projections of Crookston et al. (2010) both suggest significant changes in the acreage suitable for several 

ecologically and commercially important tree species across western Oregon.   

Projections of future broad scale vulnerability for several tree species and that many areas are already 

vulnerable based on already observed changes in climate from historical conditions are consistent with 

reports of widespread mortality experienced by trees of all ages around the US West (van Mantgem et 

al. 2009) as well as observations of increased disturbance in areas projected to be climatically vulnerable 

using bioclimate envelope modeling (Waring et al. 2011).  Nevertheless, it is still important to recognize 

that while shifts in climatic suitability may correspond to less favorable growing conditions and 

potentially to increased mortality of particular tree species, these projections do not directly translate 

into predictions of species presence or absence, as there are a variety of factors including disturbance, 

human land-use, and others that also affect the distribution of species that are not captured in these 

models. 

The most dramatic projections displayed in this report appear for Western hemlock and Western 

redcedar.  Although the future projections of Crookston et al. (2010) are more pessimistic, the ratings of 

vulnerability by 2006 of Coops and Waring (2011) bolster support for the expectation that the southern 

range of these species is likely to be under increasing pressure due to climate change.  These findings 

are also generally consistent with the northward movement of climatically-suitable zones observed by 

McKenney et al. (2007, 2011).  The projections of climatic vulnerability for Western hemlock and 

Western redcedar, particularly in southwestern Oregon, are consistent with the relatively high rating of 

habitat affinity risk factors reported by Devine et al. (2012), as well as the bioclimate envelope 
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projections of GEOS Institute (2013) using CMIP3 climate projections, and the significant shifts in 

potential vegetation types projected by the MC2 model in this area. 

Divergence of statistical and mechanistic models consistent with other studies 

Several recent studies comparing statistical/empirical approaches like Random Forests with process-

based models have concluded that statistical approaches are prone to estimating greater shifts in 

climatic suitability compared to process-based models and should thus be interpreted cautiously (Morin 

& Thuiller 2009; Rowland et al. 2011; Cheaib et al. 2012).  

In general, the findings in this report that the statistical model of Crookston et al. (2010) is more 

pessimistic in terms of projected loss of suitable habitat than the hybridized mechanistic model of Coops 

et al. (2009, 2011) are consistent with several reports in the literature that have found similar 

relationships between statistical and mechanistic models (Morin & Thuiller 2009; Keenan et al. 2011; 

Cheaib et al. 2012).  However, it is worth noting that one of the primary drivers of greater retention of 

climatically suitable habitat by mechanistic models in these studies was the incorporation of CO2 

fertilization effects on trees.  This effect is not captured in the hybridized mechanistic model utilized by 

Coops et al. (2009, 2011).   

Further, it is also worth noting that the hybrid approach of Coops et al. (2009, 2011) does not technically 

apply mechanistic modeling of habitat suitability by directly incorporating future climatic variables into a 

process-model; instead, their approach applies a simple statistical decision-tree to future climate data 

based on correlative relationships derived from process-modeling of historical climate data.   Since the 

primary benefit of using process-models compared to statistical models for projections of climatic 

suitability lies in the ability of process-models to incorporate physiological responses to a suite of altered 

environmental conditions, we contend the most informative application of process-models for this 

purpose should involve direct process-modeling of future climate variables. 

It appears likely that the projections of bioclimate envelopes of the statistical model of Crookston et al. 

(2010) are overly pessimistic, and that additional work to integrate some physiological processes into 

the projection model is warranted to improve their predictive confidence.  In particular, we believe 

there is a unique opportunity to bring in additional predictive power alongside the statistical Random 

Forests method by integrating regionally-relevant process-modeling such as the more generalized 

vegetation model MC2, species-level process models such as 3PG, or others. 

Conclusions 
Despite a variety of limitations and model assumptions across the modeling approaches considered, a 

general consensus across these datasets (including both statistical and process-based approaches) 

emerges highlighting several areas of near-term climatic vulnerability.  In particular, the southwest 

Oregon coast is projected to lose habitat suitability for Western hemlock and Western redcedar and to 

become increasingly suitable for hardwoods and other species within the subtropical mixed forest 

vegetation type shown by the MC2 model.  The Klamath Mountains and the southern extent of the 

Cascade Range are also projected to have broad losses of suitable climate for these species as the 
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climate suitable for maritime evergreen needleleaf forests recedes up the Willamette Valley and 

becomes increasingly suitable for cool temperate cool mixed forests.   

The only area that shows up relatively consistently as seeing increased climatic suitability for 

commercially important tree species appears to be for Douglas-fir in the northern and western edges of 

the BLM Lakeview District.  However, it is important to keep in mind that climatic suitability is one of 

several factors that drive the potential for a species to be productive, and that soil conditions, 

disturbance regimes, or human land use, among other factors, may play a controlling role in limiting the 

ability for a species like Douglas-fir to be successfully grown in this area. 

Given several very different modeling approaches consistently highlight similar regions of climatic 

vulnerability, it may reasonably be expected that these areas are likely to show the earliest impacts of a 

changing climate. 

This review also confirmed the major differences in model sensitivities observed in other studies 

comparing statistical and process-based models.  In particular, the Crookston et al. (2010) approach 

using Random Forests is observed to give much larger projections of contracting ranges for climatic 

suitability for several species than are found in the hybrid process-model of Coops et al. (2009, 2011).  

As the climatic suitability scores derived from this approach will feed directly into the Climate-FVS 

model, it is important to recognize at the outset of the growth-and-yield simulation that Climate-FVS is 

likely to mirror the negative forest impacts found with declining climatic suitability scores that come 

from the Random Forests approach.   

Recognizing the inherent sensitivity of statistical models to a species’ presence/absence in training data, 

we would encourage further research regarding the development of modeling approaches that 

accommodate a hybrid approach of process-models and statistical models.  The example of Iverson 

(2011) offers great interest for further inquiry, as does further development and process-modeling of 

future climates beyond the scope of work by Coops and colleagues considered throughout this review.  

In general, we believe the statistical models such as Random Forests offer incredible predictive ability 

that can be significantly improved through refinements to the approaches of how FIA training data are 

used, as well as through the incorporation of process-model projections.  Refinements to these 

bioclimate envelope projections could translate into improvements in the reliability of Climate-FVS, 

which uses these bioclimate envelope projections as direct inputs for growth-and-yield simulation (this 

process is described further below). 

Finally, this report focuses on a modest segment of scientific research and datasets that can be used to 

inform climate-wise forest management planning.   Although these models offer rich datasets with 

detailed projections of potential future climate scenarios, they should not be taken to inform 

management planning in isolation or without full recognition of the assumptions and uncertainties 

inherent in them.  Consistent with the findings of Pearson and Dawson (2003), despite these caveats, we 

believe these models remain “a useful first approximation as to the potentially dramatic impacts of 

climate change on biodiversity.” To complement these lines of evidence, we would encourage the use of 

a suite of other bodies of research and knowledge, including autecological and paleoecological research, 
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and the expertise of local resource managers to inform the potential for individual species and 

ecosystems to adapt to novel conditions and define appropriate adaptation strategies. 

How Climate-FVS uses suitability scores 

As mentioned at the beginning of this report, the future projections of bioclimate envelopes reviewed 

here are intended to be used for a modeling study investigating the potential variability and uncertainty 

in achieving various forest management objectives for the BLM across the western Oregon Districts.  

This growth-and-yield modeling is planned with the use of the Climate-FVS model.   

Climate-FVS incorporates changes in species suitability scores over the simulation period by modifying 

growth and mortality for each species within the FVS model.  The source of these climate suitability 

scores is the Random Forests approach developed in Crookston et al. (2010) and reviewed in this report.  

Changes in climate suitability scores are factored into Climate-FVS calculations for Site Index, maximum 

Stand Density Index, and to define a range of climatic conditions that a localized variant of a species 

would tolerate (a proxy for genetic adaptability of a species variant).  If a species’ suitability score 

decreases over time, Climate-FVS will decrease the growth rate for that species; if the score decreases 

beneath a threshold of 0.5, Climate-FVS will start to increase the mortality rate for the species; and if 

the score decreases below 0.2, Climate-FVS will trigger local extirpation of that species.  The 0.5 

threshold to increase mortality rates corresponds to the observation that 99.5% of species presences 

observed in the FIA plots are in locations where climatic suitability was scored above 0.5.  A more 

detailed description of the Climate-FVS program, including other climate-related factors that influence 

growth-and-yield projections, is available on the USFS website for FVS at 

http://www.fs.fed.us/fmsc/ftp/fvs/docs/gtr/ClimateFVS_UsersGuide.pdf.   

Although the suitability scores are not the only drivers of growth and mortality within the growth-and-

yield modeling process, it does appear likely that the model is likely to offer more pessimistic projections 

of climate change impacts on tree species than might be expected from mechanistic models.  The recent 

addition of a new mortality factor (dClim) in version 2 of Climate-FVS that magnifies the effect of 

changing suitability scores appears likely to predispose the model to project even more severe mortality 

and declines in productivity.   This factor is turned on by default, but can be changed or turned off by the 

user. 

Based on the commonly reported observation of statistical models producing significantly more 

pessimistic projections of bioclimate envelopes, it appears likely that the use of these projections within 

Climate-FVS would be expected to produce more pessimistic projections of climate change impacts on 

forests compared to mechanistic growth-and-yield models, and that the additional mortality factor 

recently added is likely to exacerbate this difference. 

  

http://www.fs.fed.us/fmsc/ftp/fvs/docs/gtr/ClimateFVS_UsersGuide.pdf
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