

Main methodological objective

- To compare 3 approaches for predicting stand structure and dynamics with comparable output resolution, namely:
 - \Rightarrow diameter distribution model (reverse Weibull)
 - ⇒ relative-basal-area-based dis-aggregative approach
 - \Rightarrow individual tree model

Required model components (Standlevel; *Tree-level*)

Component	DDM	RBA	ITM
MEAN TOP HEIGHT	Χ	Χ	*
BASAL AREA	Χ	Χ	*
STOCKING	Χ	Χ	*
STANDARD DEVIATION of dbh's	Χ		
MAXIMUM DIAMETER	Χ		
RELATIVE BASAL AREA		Χ	
PROBABILITY OF TREE MORTALITY		Χ	X
DIAMETER INCREMENT			Χ

For calculating volumes: individual-tree height model; tree and stand volume equations

* only required if the ITM is to be adjusted

<section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Comparing diameter distribution depictions

Error Index (Reynolds et al. 1988)

 $EI = \sum |(obs_freq_i - pred_freq_i)W_i|$

where **i** indicates the ith diameter class, and W is a weighting factor (e.g. tree volume)

Ave	erage	Error	Indices
10	radiata	volidati	on plata)

(P. radiata, validation plots)

	Weighting factor			
Method	Tree volume	Tree b. area	None	
	(p=0.642)	(p=0.367)	(p=0.232)	
ITM	226	21.2	184	
ITM_adj	220	20.6	180	
RBA	233	21.8	197	
DDM	249	23.5	203	

Application

Compatible Individual-Tree And Stand Simulators (CITASS) were programmed with VBA under Excel[®] environment

Hybrid modeling of growth and yield

Euan Mason, Helge Dzierzon and Joe Landsberg

Potential for hybrid models

- Potential for representing rotation-length impacts of regeneration practices
- Geographic Information Systems
 More known about each site and stand
- Variation in growth pattern from site to site
 - Less need for regional models
- Variation in weather from year to year
 - Predicting the past
- Variation in monthly climate offers monthly predictions
- Climate change may affect growth patterns
- Kyoto protocol
 - Carbon storage explicit in some models

An example "hybrid" model
3-PG Model (Landsberg & Waring 1997)
$$NPP = \varepsilon \sum_{t=1}^{T} APAR_t f_{\theta} f_D f_T f_F f_S$$

Allocation varies with fertility

An idea among many

- Climatic variables as well as stocking and radiation sum estimates in mortality model
- NB: Fertility of soils is not well sorted
- To what extent can *temporal* variation in climatic influences inform us about influences on crop growth and mortality of *spatial* variation in climate?

- Compatible stand, distribution & individual tree projection systems
- Models that represent height vs basal area growth as functions of site variables
- Models that respond to climatic and local weather variation
- Models specific to each site
- Models that naturally provide growth estimates within years

Assumptions for parallel growth trajectories

- Growth input change is temporary
- Site can support more rapid growth
- Future treatments do not bring about a resumption of the effect
- No significant change in allometry
- No significant physiological age effects
- No differences in biochemistry

Results - Compartment 558

Results - Compartment 558

