

Modelling paradigms – Hybrid models to make mensurationists smile

> Euan Mason New Zealand School of Forestry University of Canterbury Christchurch, New Zealand

Stand level or tree level models?

Ricardo Methol & Euan Mason

Outline

- Background
- Objectives
- Data & Methods
- Results
 - Model components
- Comparisons of approaches
- Conclusions

Background

- Tree level information is important
- Representing trees in models
 - individual tree models
 - dis-aggregative methods (e.g. Weibull distributions)

Background (cont.)

- Tree-level and stand-level estimates should be compatible
- Comparisons of individual-tree models vs. stand-level models constructed with the same data are scarce

Main methodological objective

- To compare 3 approaches for predicting stand structure and dynamics with comparable output resolution, namely:
 - \Rightarrow diameter distribution model (reverse Weibull)
 - relative-basal-area-based dis-aggregative approach
 - \Rightarrow individual tree model

Main practical objective

To develop growth models providing increasing levels of resolution for increasing levels of detail in the input data

level; <i>Tree-level</i>)				
Component	DDM	RBA	ITN	
MEAN TOP HEIGHT	Х	Х	*	
BASAL AREA	Х	Х	*	
STOCKING	Х	Х	*	
STANDARD DEVIATION of dbh's	Х			
MAXIMUM DIAMETER	Х			
RELATIVE BASAL AREA		Х		
PROBABILITY OF TREE MORTALITY		Х	Х	
DIAMETER INCREMENT			Х	

For calculating volumes: individual-tree heigh model; tree and stand volume equations

* only required if the ITM is to be adjusted

Methodology (1 of 2)

- Growth intervals
 - stand-level models: all possible
 - individual tree models: annual intervals
- Redundant data and autocorrelation were minimised by subsampling.
- Various equation forms and modelling techniques were examined for each component.

Methodology (2 of 2)

Comparisons

- Basal area and stocking estimates:
 - plots of residuals
 - analysis of residual statistics (mean, std. dev., etc.)
- Diameter distributions
 - error indices (Reynolds et al. 1988)

Individual tree heights

 Twenty one 2-parameter models of the form h = f {dbh} were tried
 e.g. Petterson eq.

Comparing diameter distribution depictions

Error Index (Reynolds et al. 1988)

$$EI = \sum | (obs_freq_i - pred_freq_i) W_i |$$

where **i** indicates the ith diameter class, and W is a weighting factor (e.g. tree volume)

Average Error Indices (P. radiata, validation plots) Weighting factor Method Tree volume Tree b. area None (p=0.642) (p=0.232) (p=0.367) 226 ITM 21.2 184 20.6 ITM_adj 220 180 RBA 233 21.8 197 249 23.5 203 DDM

Conclusions (1 of 2)

- Including altitude improved models
- Use of long projection intervals:
 - better performance of the new MTH model as compared to the MTH model of KGM3/PPM88 over long projections
 - good performance of DDM over long projections
- Basal area estimates from <u>unadjusted ITM</u> were unbiased, whereas stocking estimates were biased.

Conclusions (2 of 2)

- Diameter distribution depiction. Ranking of methods by decreasing error index: ITM_{adi} - ITM - RBA - DDM
- ITM_{adj} was the best approach overall (also compatible with stand level models).
- DDM also useful:
 when there are no tree lists available
 long projections

Modelling effects of weed competition on growth of *Pseudotsuga menziesii*: A hybrid approach

> Euan Mason Robin Rose Lee Rosner

Outline

- Outline of Starker critical period study
- Results of study
- Modeling the results
- Conclusions
- Implications for hybrid modelling

Basic IGM equation

 $Y_T = Y_0 + \alpha T^{\beta}$

- Y=height, dbh or basal area, T=time, α & β = coefficients
- Fitted to a range of species
- Accounts for a decline in relative growth rate with tree
- size
- Allows for
 - changes in allocation of carbon
 - increased self shading
 Changes in leaf dimensions

Mason & Whyte (1997) Mason (2001) Kirongo & Mason (2003)

Layout

- 4 species
 - Douglas fir, western hemlock, western red cedar, grand fir
- 8 vegetation management schedules
- 4 replications
- Planting at 3.1*3.1 m
- 64 trees/plot, 36 central trees measured

Vegetation management schedules

- T =treated, March-May
- O =not treated

00000	0
0000	T
τττο	T

OTTT OTTTT 000 TTTOO TTT

An example "hybrid" model

3-PG Model (Landsberg & Waring 1997)

 $NPP = \varepsilon \sum_{t=1}^{t} APAR_t \min[f_{\theta} f_D] f_T f_F f_S$

Allocation varies with fertility

Potential issues with 3-PG

- Allocation of C is derived from allometry
- Recursiveness, compounded errors
- Over parametarisation
- Fertility is inadequately represented
- Stand and stem geometry are not modelled
- Circularity
 - DBH->Carbon, Carbon->DBH
 - Measurement of LAI may partially solve this

Solution – Blend mensurationist's methods with 3-PG

• Substitute potentially useable light sum for time in equation

$$Y_T = Y_0 + \alpha R^{\beta}$$

- R=Modified light sum from time of planting to time T
 - Modified by the capacity for plants to use light, given Temperature, VPD, Soil water

Soil characteristics

- Clay
- Depth of roots = 45 cm
- Gravimetric water content at field capacity = 0.4
- Max Available Soil Water = 180
- Gravimetric water content at minimum ASW = 0.2
- Min ASW = 90

Hybrid modeling of growth and yield

Euan Mason, Helge Dzierzon and Joe Landsberg

Potential for hybrid models

- Potential for representing rotation-length impacts of regeneration practices
- Geographic Information Systems
- More known about each site and standVariation in growth pattern from site to site
 - Less need for regional models
- Variation in weather from year to year
- Predicting the past
- Variation in monthly climate offers monthly predictions
- Climate change may affect growth patterns
- Kyoto protocol
 - Carbon storage explicit in some models

Potentially useable light sum equation (PULSE) modelling

- Time = accumulated light
- Use 3-PG type quantum efficiency modifiers to accumulate *potentially used* light
- Use sigmoidal difference equations as usual, fitted to PSP data
- Avoids some of 3-PG's problems
 - Compounded errors
 - Allocation of C
 - Overparametarisation
 - Lack of stand geometry

 $MTH2 = a \left(\frac{MTH1}{a}\right)^{\ln(1-\exp(-k_{RAD_2}))}$

PULSE modelling

- Estimate genetic components of seasonal variations in primary and secondary growth
- Different radiation sums for primary and secondary growth

PULSE modelling

- Climatic variables as well as stocking and radiation sum estimates in mortality model
- NB: Fertility of soils is not well sorted
- To what extent can *temporal* variation in climatic influences inform us about influences on crop growth and mortality of *spatial* variation in climate?

PULSE modelling

- Compatible stand, distribution & individual tree projection systems
- Models that represent height vs basal area growth as functions of site variables
- Models that respond to climatic and local weather variation
- Models specific to each site
- Models that naturally provide growth estimates within years

Preliminary Example - P. radiata in **Central North Island**

Conclusions

- Compatible stand and tree-level growth and yield models were complementary
 - Diameter distribution for longer projections
- Potentially useable light sum equations (PULSE) fitted experimental and PSP data better than models based on time
 - Link G & Y with ecophysiology
 - Within year estimates
 - Sensitive to site variation in space and time
 - May facilitate modelling effects of silvicultural treatments